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Abstract: The analysis of stress distribution around an internal 

elliptical hole under axial stress is a challenging task in engineering 
design and analysis due do the action of external. In recent years, 
the finite difference technique has been widely used to investigate 
the stress distribution in such structures. In this paper, stress 
distribution of two-dimensional rectangular plates with elliptical 
holes in elastic bodies have been analyzed using the finite 
difference method. The results show that stress concentration 
occurs near the boundary of the hole, and the presence of the hole 
weakens the plate. The most critical section of the plate is through 
the center of the hole and perpendicular to the loading direction. 
The points on the boundary of the hole on this section are the most 
susceptible to failure. These findings provide valuable insights for 
the design and optimization of engineering structures. Further 
research can extend these findings to other geometries, loading 
conditions, and material properties, to improve the safety and 
efficiency of engineering systems. 

 
Keywords: Finite difference scheme, stress distribution, 

numerical analysis. 

1. Introduction 
As technology advances, machinery and structures become 

increasingly complex. Consequently, elasticity has become a 
classical topic, and its problems have become even more 
classical. However, stress analysis problems are still limited by 
many simplifying assumptions. To obtain more comprehensive 
and sophisticated analyses, researchers have turned to the 
Theory of Elasticity. Analysis based on this theory can provide 
more detailed and precise information about stress, strain, and 
deformation at any point within a body. 

While the theories of elasticity were established earlier, 
practical problem-solving began with the introduction of the 
stress function. The stress function, developed earlier, had 
limited success. It was only used for the solution of two-
dimensional problems in the form of a polynomial and applied 
to several problems in bending of beams of narrow rectangular 
cross-section. However, the elementary formulas of the strength 
of materials give correct values for normal and shearing stresses 
in a cantilever loaded at the free end. 

Many researchers have used the stress function technique for 
analyzing the stress around a circular hole in a plate [1], stresses 
around a slender hole [2], stresses around a concentrated load  

 
on a straight boundary [3], stresses around a concentrated load 
on a beam, and tribological behavior of metal [4]. 

The formulation of two-dimensional elastic problems was 
employed, which was initially introduced by Uddin [5]. Idris 
[6] later utilized this formulation to obtain analytical solutions 
for various mixed boundary mode elastic problems. Ahmed 
extended its use by solving finite difference solutions for 
several mixed boundary value problems of simple rectangular 
bodies. It was discovered by Dow, Jones, and Harwood that the 
accuracy of the finite difference technique in investigating the 
distribution of stress along the boundary was superior to that of 
the finite element technique. Subsequently, Akanda [7] 
developed a new numerical scheme that enabled the solution of 
irregular-shaped elastic bodies with mixed-mode boundary 
conditions. 

This paper focuses on the stress analysis of two-dimensional 
rectangular plates with elliptical holes in elastic bodies by finite 
difference method and changing different parameters for 
different geometric shapes of the internal hole. Though a 
rectangular plate is selected for analysis, this formulation can 
be used for other arbitrary shapes of plates. While a body has 
three dimensions, most practical problems of stress analysis can 
be reduced to two-dimensional problems under simplifying 
assumptions. The present proposal thus includes a wide range 
of problems of stress analysis of elastic bodies. 

2. Method and Modelling 

A. Governing Equation 
The analysis of stresses in an elastic body is typically a three-

dimensional problem. However, when dealing with plane stress 
or plane strain cases, the stress analysis of a three-dimensional 
body can be easily reduced into a two-dimensional problem. 
The problem under investigation in this study pertains to a plane 
strain problem. In the absence of any body forces, the equations 
governing the three-stress component  ơ𝑥𝑥 ,  ơ𝑦𝑦 and  ơ𝑥𝑥𝑦𝑦 under 
the state of plane stress or plain strain are as follows: 

 
𝜕𝜕 ơ𝑥𝑥 
𝜕𝜕𝑥𝑥

 + 𝜕𝜕 ơ𝑥𝑥𝑥𝑥 
𝜕𝜕𝑦𝑦

 = 0                                                                       (1) 
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These two equations can be used for the solution. But it is 

still difficult to solve for two functions simultaneously. To 
overcome the difficulty, the two equations are transformed into 
a single equation with a single function. So, a new function 
called displacement potential function (ψ) is defined as a 
function of displacement components to reduce the no. of 
governing differential equations into a single equation like 
following: 

 
u = 𝜕𝜕

2𝜓𝜓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

                                                     (6) 

v = - 1
1+𝜇𝜇

 [(1 − 𝜇𝜇) 𝜕𝜕
2𝜓𝜓
𝜕𝜕𝑦𝑦2

 + 2𝜕𝜕
2𝜓𝜓
𝜕𝜕𝑥𝑥2

]                                       (7) 

Putting this value in ψ (x, y) it becomes: 
𝜕𝜕4𝜓𝜓
𝜕𝜕𝑥𝑥4

  + 2 𝜕𝜕4𝜓𝜓
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2

 +  𝜕𝜕
4𝜓𝜓
𝜕𝜕𝑦𝑦4

  =0                                            (8) 

So the problem is now reduced in such a way that a single 
function (x,y) has to be evaluated from the bi-harmonic which 
satisfying the boundary conditions that are specified at the 
boundary. 

B. S Geometry and Boundary Condition 
The geometry of the problem is shown in Fig. 1(a). The 

material taken assumed perfectly elastic and were given the 
properties of material with Poisson’s ratio µ=0.3. Despite the 
choice, this procedure is also valid for any type of elastic 
material.  

The boundary AB as shown in Fig. 1(b) is considered rigidly 
fixed. So, there will be no displacement in this part of the 
boundary and thus the boundary conditions are set as un=0.0, ut 
=0.0. at the right boundary (CD) a uniform tensile load is 
applied. For this boundary for every nodal point the boundary 
conditions are set as σn /E = 3×10-4, σt /E = 0.0, where the 
symbol E denotes modulus of elasticity, E=200GPa. The top 
and bottom boundaries (boundary AD and BC) are free from 
stress. The boundary conditions for the free boundary are set as 
σn /E = 0.0, σt /E = 0.0. The surface of the internal hole is free 
from any external load; boundary conditions are, therefore, 
assigned as σn /E = 0.0, σt /E = 0.0. For the above problems 
distribution of stress and displacement components are 
obtained from the output of the computer program. From that 
result stresses and displacements of five different sections (as 
shown in Fig. 2(b)) are analyzed to study the effect of hole in 
plate. 
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Fig. 1.  Geometry of the problem, (a) Boundary Conditions applied for the 

problem, (b) The body is divided into 5 sections. (Sec 1: y/b=0, Sec 2: 
y/b=0.25, Sec 3: y/b=0.5, Sec 4: y/b=0.75, Sec 5: y/b=1.0) 

3. Results and Discussions  
Fig. 2 shows the distributions of u and v for the five sections 

described above, plotted against the distance from the top 
boundary, for h/k=0.5. The distributions of u for sections 1 and 
5 and 2 and 4 are similar, indicating a symmetrical distribution 
of u around the hole. However, for the same loading condition, 
the values of u are higher in section 3, passing through the 
center of the hole. This is due to the flattening of the body under 
loading. Fig. illustrates the distribution of v for the five different 
sections for the body with hole size h/k=0.5, plotted against the 
distance from the top boundary. This figure shows a 
symmetrical distribution of v around the horizontal centerline 
(x/a=0.5). For any section between the hole and the loading 
boundary (section 5), the value of v is larger at the horizontal 
centerline. Conversely, for sections in the other zone i.e., 
between the fixed boundary and hole (section 1), the value of v 
is minimum at the horizontal centerline due to the flattening of 
the hole under loading. Throughout the body, the values of v 
are positive, and the values of v are higher in sections closer to 
the loading end and further from the fixed end. In section 3, the 
values of v for all nodal points are almost the same. However, 
for section 2 and 4, the values vary at each nodal point, with a 
higher variation than in sections 1 and 5. This variation is 
attributed to the presence of the hole. Without the hole, for a 
section perpendicular to the direction of loading, the values of 
v for every point would be the same. This effect diminishes at 
a distance larger than the radius of the hole. 
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Fig. 2.  Stress distribution of u (a) and v (b) in different 5 section for h=2.5 
and k=5 

 
In Fig. 3, the distribution of σx for different sections of the 

body with a hole size of h/k=0.5 is plotted against the distance 
from the left boundary. The stress component values for 
sections away from the hole are positive, while for some 
sections near the hole, they are negative. If there were no hole 
present, the whole body would experience compression along 
the x-axis, resulting in negative values of σx for every nodal 
point. Additionally, Fig. reveals that the values of the stress 
component at the upper and bottom boundaries are zero because 
the maximum material flow occurs at these regions, leading to 
a stress of zero. Furthermore, the values of σx for section 3 
decrease as we move from the left or right boundary of the plate 
toward the hole boundary. This decrease is due to the greater 
material flow occurring in the vicinity of the hole boundary 
region, leading to a reduction in the stress component. 

Fig. 3(b) displays the distribution of σy for the body with hole 
size h/k=0.5 plotted against the distance from the top boundary. 
This figure reveals that the values of σy for similar nodal points 
are the same at y/b=0.25 and y/b=0.75. The value of σy 
decreases as we approach the hole and then increases again. 
The distribution of σy for y/b=1.0 is a straight line, indicating 
no variation of σy on the free right surface (section 5). At the 
fixed end, i.e., y/b=0.0 (section 1), little variation occurs. The 
values of σy at the top and bottom boundaries for different 
sections, except section 3, are found to be larger than the values 
of the applied stress. In section 3, the values of σy at grid points 
on the upper and lower boundaries of the hole are almost equal 
to 4.2, which is the highest developed stress in the body. Fig. 

3(b) demonstrates that among the sections, the stress 
component values are highest in section 3 (the section through 
the center of the hole and perpendicular to the direction of 
loading). Thus, section 3 is the most critical section of the plate. 
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Fig. 3.  Stress distribution of σx (a) and σy (b) in different 5 section for h=2.5 
and k=5 

 
In Fig. 4, the distribution of τxy is shown for h/k=0.5 at the 

five sections depicted above. No change in τxy is observed when 
tensile loading is applied for y/b=0.0, 0.25, 0.75, and 1.0. 
However, at the boundary of the hole for y/b=0.5, two points 
are obtained. The upper part of section 3 of the hole yields a 
positive point, while the lower part of section 3 yields a negative 
point. These points indicate the presence of high values of τxy 
due to the hole's existence. 
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Fig. 4.  Stress distribution of τxy in different 5 section for h=2.5 and k=5 
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4. Conclusion 
The analysis of stress distribution in elastic bodies is a 

fundamental aspect of engineering mechanics. In the case of 
plates with internal holes, stress analysis is of particular 
importance due to their widespread applications in various 
fields of engineering. The present study focuses on the stress 
and displacement analysis of a rectangular plate with an internal 
elliptical hole under uniform tension loading conditions. 

The results of this thesis work show that stress distribution 
changes around the hole boundary, with stress concentration 
occurring in the vicinity of the hole boundary. The presence of 
an internal hole also weakens the plate. The most critical section 
of a rectangular plate with an internal elliptical hole is a section 
through the center of the hole and perpendicular to the direction 
of loading. Additionally, the points on the hole boundary on this 
section are the most vulnerable to failure. 

The findings of this study provide valuable insights into 
stress analysis of plates with internal holes, with implications 
for design and optimization of engineering structures. Further 
research can extend these findings to other geometries, loading 
conditions, and material properties, with the goal of improving 
the safety and efficiency of engineering systems. 
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