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Abstract: This comprehensive article explores the past, present, 

and future use of nanotechnologies in the synthesis and 
development of new catalysts. In the past, the application of 
nanotechnologies in catalysis began with a focus on reducing the 
size of catalysts to the nanoscale, leading to improved efficiency 
and selectivity through recent technological advancements. 
Currently, nanomaterials like metal nanoparticles, metal oxides, 
and carbon-based materials are widely used in the synthesis of 
efficient catalysts. Computational methods like Density Functional 
Theory (DFT) have enabled the prediction of catalyst activity and 
selectivity. In the future, advanced techniques such as Atomic 
Layer Deposition, plasma-enhanced chemical vapor deposition, 
and electrospinning will lead to the production of even more 
efficient and selective catalysts. Furthermore, combining 
nanotechnology with biotechnology will inspire the development 
of biomimetic catalysts. 
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1. Introduction 
Nano-technology, as one of the most significant scientific 

and industrial achievements of the 20th century, has various 
applications in fields such as electronics, medicine, materials, 
energy, and more. One important application of 
nanotechnology is the synthesis and development of new 
catalysts [1]–[3].  

Catalysts are used as the main agent in chemical, oil, 
petrochemical processes, and more. The benefits of using 
optimized catalysts include increased efficiency and reduced 
costs in industrial production, not to mention environmental 
protection [4]–[8]. In recent decades, many efforts have been 
made to improve the efficiency of catalysts through material 
engineering and the design of nanostructures. This article aims 
to comprehensively review the past, present, and future of 
nanotechnology in the synthesis and development of new 
catalysts. 

In the first section, we will examine the stages of traditional 
catalyst development. In the second section, we will introduce 
nano-materials and the principles of designing nano-catalysts. 
The third section will focus on the synthesis methods of nano- 

 
catalysts. In the fourth section, we will explore the methods of 
developing new catalysts using nanotechnologies. Finally, we 
will present our findings and offer solutions for the challenges 
posed in the development of nano-catalysts. 

2. Examining the Stages of Traditional Catalyst 
Development 

For centuries, traditional catalyst development has been used 
in the chemical and industrial production industry. These 
catalysts are typically made from group three and four metals 
such as nickel, cobalt, iron, and copper, as well as metal oxides 
such as zinc oxide and aluminum oxide [9]–[12]. 

In the design stage of traditional catalysts, solid-state 
methods, stacking methods, deposition methods, and ion 
exchange and polymerization methods have been used. 
Additionally, to improve the properties of traditional catalysts, 
baking and reduction methods are also utilized. In this method, 
the catalyst interacts thermally with a neutral gas (such as 
hydrogen) to increase its activity [13]–[16]. 

A. Methods design of traditional catalysts 
The design of traditional catalysts typically involves several 

methods, including [17]–[22]: 
1. Synthetic Methods: The most common method for 

producing traditional catalysts is synthetic chemistry, 
which involves the preparation and modification of 
catalyst materials using chemical reactions. This can 
include methods such as precipitation, sol-gel 
synthesis, hydrothermal synthesis, and others. 

2. Impregnation: In this method, a solution containing 
metal ions is added to a support material such as 
alumina or silica, which absorbs the metal ions onto its 
surface. The resulting material is then dried and 
calcined to produce the final catalyst. 

3. Mechanical Mixing: This method involves physically 
mixing the catalyst components together, typically 
using a ball mill or other similar device. 

4. Co-precipitation: This method involves simultaneously 
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precipitating both the support and the metal ions from a 
solution, leading to a highly homogeneous mixture of 
the two components. 

5. Thermal Decomposition: In this method, a precursor 
compound is heated to high temperatures, causing it to 
decompose and leaving behind the desired catalyst 
material. 

6. Ion exchange: In this method, the support material is 
first impregnated with a solution containing a cation. 
The cation can then be replaced with a metal ion by 
immersing the material in a solution containing the 
desired metal ion. 

7. Flame spray pyrolysis: In this method, a precursor 
solution is sprayed into a flame where it is rapidly 
heated and decomposed to form nanoparticles. The 
nanoparticles are then deposited onto a support material 
to form the final catalyst. 

These methods can be used individually or in combination 
with each other to produce catalysts with specific properties and 
performance characteristics. 

3. Introduction to Nanomaterials and Principles of 
Nanocatalyst Design 

Nanomaterials are materials with dimensions in the range of 
1-100 nanometers. Due to their small size, they exhibit unique 
physical and chemical properties that differ from their bulk 
counterparts. These properties make them highly desirable for 
a wide range of applications, including catalysis [23]–[26]. 

Nanocatalysts are catalysts that utilize nanomaterials as their 
active component. They have attracted significant attention due 
to their high surface area, which provides more active sites for 
catalytic reactions. The design of nanocatalysts is crucial in 
determining their efficiency and selectivity in catalytic 
reactions [27]–[31]. 

The principles of nanocatalyst design involve tailoring the 
size, shape, composition, and surface properties of the 
nanomaterial to optimize its catalytic activity. Size and shape 
are critical parameters, as they can affect the surface area, 
electronic structure, and crystallographic orientation of the 
nanomaterial [31]–[35]. The composition of the nanomaterial 
also plays a significant role, as it can influence its chemical 
reactivity and selectivity in catalytic reactions. For example, 
smaller nanoparticles typically exhibit higher catalytic activity 
due to their larger surface area-to-volume ratio, while the shape 
of the nanoparticle can influence the accessibility of active sites 
for reactants [36]–[42]. 

In addition to these physical factors, the choice of 
composition and surface functionalization can also impact the 
catalytic performance of a nanocatalyst. For example, changing 
the composition of the nanoparticle can alter its electronic 
structure and thus affect its ability to donate or accept electrons 
during a catalytic reaction [23], [43]–[48]. Similarly, modifying 
the surface of the nanoparticle with certain functional groups 
can enhance its ability to interact with reactants and promote 
specific chemical transformations [36], [49], [50]. 

Surface properties, such as defects, surface charges, and 
surface functional groups, also impact the catalytic activity of 

nanocatalysts by influencing adsorption and desorption 
processes. Therefore, understanding and controlling these 
properties are essential in designing effective nanocatalysts 
[51]–[54]. 

In summary, the unique properties of nanomaterials make 
them excellent candidates for catalysis, and the design of 
nanocatalysts involves tailoring their size, shape, composition, 
and surface properties to optimize their catalytic activity and 
selectivity. 

4. Review of Traditional Methods for Synthesis of 
Nanocatalysts 

Nanocatalysts play a crucial role in various industrial 
applications such as energy production, environmental 
remediation, and chemical synthesis [27], [55]–[58]. The 
synthesis of nanocatalysts involves the preparation of metallic 
or metal oxide nanoparticles with controlled size, shape, and 
composition. In this regard, several traditional methods have 
been developed for the synthesis of nanocatalysts over the years 
[31], [35], [59], [60]. 

One of the most commonly used methods is the impregnation 
technique, which involves the deposition of metal precursors 
onto a support material followed by calcination to produce the 
desired nanocatalyst. This method provides good control over 
the catalyst composition, but it often results in low dispersion 
of the active sites which limits its catalytic activity [61]–[64]. 

Another widely used method is the sol-gel method, which 
involves the hydrolysis and polymerization of metal alkoxides 
or salts in a solution to form a gel [18], [65]–[68]. The gel is 
then dried and calcined to produce the nanocatalyst. This 
method provides excellent control over the catalyst composition 
and morphology, but it can be time-consuming and expensive 
[69], [70]. 

Other common methods include co-precipitation, electro-
deposition, and thermal decomposition, each with their own 
advantages and disadvantages[71]–[73]. Co-precipitation 
allows for easy control over the nanoparticle size and 
composition, while electro-deposition provides good control 
over the nanoparticle shape. Thermal decomposition is fast and 
efficient but may lead to agglomeration of the nanoparticles 
[74]–[76]. 

In recent years, several novel synthesis methods have also 
been developed for the production of nanocatalysts. For 
instance, green synthesis methods that use plant extracts or 
biocompatible agents have gained attention due to their eco-
friendly and sustainable nature. These methods can produce 
nanoparticles with controlled size and shape and are often cost-
effective [77]–[79]. 

Another promising method is the electrospinning technique, 
which involves the electrostatic deposition of a polymer 
solution containing metal precursors onto a substrate [80], [81]. 
This method can produce nanofibers with high surface area and 
porosity and can be used to create multi-component 
nanocatalysts with enhanced catalytic activity [82]–[84]. 

Furthermore, the use of microemulsions or reverse micelles 
as templates for nanoparticle synthesis has also been explored. 
In this method, the aqueous phase containing the metal 
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precursors is dispersed in an oil phase with surfactants, which 
leads to the formation of nanometer-sized droplets [85]–[88]. 
The droplets act as templates for the nucleation and growth of 
nanoparticles, resulting in highly uniform size and shape [89]–
[91]. 

The field of nanocatalyst synthesis is constantly evolving, 
with new methods being developed and existing ones being 
optimized. The choice of synthesis method depends on several 
factors such as the desired properties of the nanocatalyst, the 
scale of production, and the economic feasibility. A 
combination of different synthesis methods may also be used to 
achieve the desired properties of the nanocatalyst. 

5. Investigating the Development Methods of New 
Catalysts Using Nanotechnologies 

Developing new catalysts using nanotechnologies is an area 
of active research and development. Nanotechnology plays a 
critical role in this process, as it allows for the precise control 
of materials at the nanoscale, which can greatly enhance their 
catalytic properties [92]–[94]. 

One common approach to developing new catalysts is to use 
nanoscale materials as the catalytic component. For example, 
metal nanoparticles are often used as catalysts due to their high 
surface area and reactivity. In some cases, the nanoscale 
materials themselves can be used as catalysts, such as carbon 
nanotubes or graphene [50], [95]–[97]. 

Another approach involves modifying the surface of existing 
catalysts with nanoscale materials. This can be done through 
techniques such as deposition, impregnation, or 
functionalization. By adding nanoscale materials to the surface 
of a catalyst, researchers can alter its properties, such as 
selectivity, activity, and stability [50], [98]–[100]. 

To investigate the development methods of new catalysts 
using nanotechnologies, researchers may use a variety of 
techniques. These could include scanning electron microscopy 
(SEM), transmission electron microscopy (TEM), X-ray 
diffraction (XRD), and Fourier-transform infrared spectroscopy 
(FTIR). These techniques allow researchers to study the 
structure, composition, and properties of nanoscale materials 
and their interactions with catalysts [101], [102]. 

In addition to experimental techniques, computer simulations 
and modeling can also play a role in the development of new 
catalysts. Researchers can use computational methods to 
predict the behavior of nanoscale materials and their 
interactions with catalysts, which can inform the design of new 
catalysts and guide experimental efforts [103]–[105]. 

Developing new catalysts using nanotechnologies involves a 
variety of techniques and methods, each with its own strengths 
and limitations. Here are some of the key approaches scientists 
have used to date[106]–[108]: 

• Bottom-up synthesis: This approach involves building 
materials from the ground up, starting with individual 
atoms or molecules and assembling them into larger 
structures. For example, researchers might create 
nanoparticles from scratch by mixing together 
precursors in a controlled environment. 

• Top-down synthesis: In contrast to bottom-up 
synthesis, top-down synthesis involves breaking down 
larger materials into smaller ones. For example, 
researchers might create nanoparticles by grinding 
down a larger material until it reaches the desired size.  

• Self-assembly: This approach involves designing 
materials that can spontaneously assemble themselves 
into specific structures without intervention. For 
example, researchers might use DNA to create self-
assembling nanostructures. 

• Templating: This method involves using a template or 
mold to create a specific shape or structure. For 
example, researchers might use a nanoporous substrate 
as a template to create nanowires. 

• Surface modification: This approach involves 
modifying the surface of a material to enhance its 
catalytic properties. For example, researchers might 
add functional groups to the surface of a nanoparticle 
to make it more reactive. 

In addition to the methods mentioned earlier, other strategies 
that are commonly used in the development of new catalysts 
using nanotechnologies include [109]–[112]: 

• Doping: This approach involves adding small 
amounts of a dopant material to an existing catalyst 
to alter its properties. For example, researchers 
might add metal ions to a nanoparticle catalyst to 
improve its selectivity. 

• Core-shell structures: This method involves 
creating a core-shell structure where one material 
(the core) is surrounded by another material (the 
shell). For example, researchers might create a core-
shell nanoparticle where the core is a magnetic 
material and the shell is a catalytic material. 

• Alloying: This approach involves combining two or 
more metallic elements to form a new material with 
desired properties. For example, researchers might 
alloy platinum with other metals to create a more 
active and stable catalyst. 

• Atomic layer deposition (ALD): This technique 
involves depositing thin layers of material onto a 
substrate in a controlled manner, allowing precise 
control over the composition and thickness of the 
resulting materials. For example, researchers might 
use ALD to deposit layers of metal oxide onto a 
nanoparticle to modify its catalytic properties. 

• High-throughput screening: This approach involves 
rapidly testing large numbers of materials for their 
catalytic activity. For example, researchers might 
use combinatorial chemistry techniques to 
synthesize and screen thousands of different 
nanoparticle compositions at once. 

6. Examining the Challenges in Developing Nano-Catalysts 
The development of nano-catalysts has been an active area of 

research due to their unique catalytic properties compared to 
conventional catalysts. However, the synthesis and 
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characterization of these materials present several challenges 
that have hindered their widespread application. 

One of the main challenges is achieving precise control over 
the size, shape, and composition of the nanoparticles. Even 
slight variations in these parameters can significantly affect the 
catalytic activity and selectivity of the material. Additionally, it 
can be challenging to scale up the synthesis process while 
maintaining consistency in the final product. 

Another challenge is preventing agglomeration and sintering 
of nanoparticles during catalysis. This can lead to a loss of 
surface area and activity, and ultimately, the deactivation of the 
catalyst. Strategies such as encapsulation and support materials 
have been developed to address this issue. 

Furthermore, understanding the mechanisms of catalysis on 
a nanoscale level can pose a significant challenge. The 
complexity of the reactions, combined with the limited 
availability of tools for in situ and operando characterization, 
makes it difficult to determine the active sites and reaction 
pathways involved in the catalytic process. 

Developing nano-catalysts can be a challenging task due to 
several reasons. Some of the major challenges are: 

• Synthesis: Synthesizing uniform-sized nanoparticles 
with controlled composition, morphology, and crystal 
structure is one of the main challenges in developing 
nano-catalysts. The synthesis process should also be 
scalable, reproducible, and cost-effective. 

• Stability: Nano-catalysts tend to be highly reactive and 
prone to aggregation or deactivation under harsh 
reaction conditions. Therefore, developing stable 
nano-catalysts that can withstand high temperatures, 
pressure, and corrosive environments is another 
challenge. 

• Activity: The catalytic activity of nano-catalysts can be 
affected by various factors such as particle size, shape, 
surface area, and composition. Developing nano-
catalysts with optimal activity for the target reaction is 
a significant challenge. 

• Selectivity: Selectivity is another critical factor in 
catalysis. Developing nano-catalysts that can 
selectively produce the desired products and minimize 
unwanted side reactions is a challenge. 

• Characterization: The characterization of nano-
catalysts is complicated by their small size, high 
surface area, and unique properties. Researchers must 
use advanced techniques such as transmission electron 
microscopy, X-ray diffraction, and spectroscopy to 
fully characterize these materials and understand their 
behavior. 

• Catalytic performance: Finally, developing effective 
catalysts requires careful tuning of their structure and 
composition to optimize their catalytic activity and 
selectivity. This requires a detailed understanding of 
the underlying chemical reactions and reaction 
mechanisms, as well as the ability to test the catalysts 
under relevant conditions. 

• Reproducibility: Reproducing the same catalytic 

performance of nano-catalysts from batch to batch can 
be a challenge due to the difficulty in controlling the 
size, shape, and composition of nanoparticles during 
synthesis. 

• Poisoning: Nano-catalysts may also be prone to 
poisoning by impurities or contaminants present in the 
reaction mixture, which can reduce their catalytic 
activity and selectivity. 

• Mass transfer limitations: The small size of nano-
catalysts can lead to mass transfer limitations, 
particularly when adsorption and desorption of 
reactants and products occur on the surface of the 
nanoparticles. Overcoming these limitations requires 
careful design and optimization of the catalyst 
structure and reaction conditions. 

• Scale-up: Scaling up the production of nano-catalysts 
from laboratory to industrial scale is another 
significant challenge. The process should be not only 
economically feasible but also environmentally 
friendly. 

• Integration with existing systems: Incorporating nano-
catalysts into existing industrial processes can be 
challenging due to differences in reactor design, 
operating conditions, and compatibility with other 
components of the system. 

In summary, developing efficient, stable, and reproducible 
nano-catalysts for various industrial applications requires 
overcoming several challenges related to synthesis, stability, 
activity, selectivity, characterization, reproducibility, 
poisoning, mass transfer, scale-up, and integration with existing 
systems. However, successful development of nano-catalysts 
holds tremendous promise for enhancing the efficiency, 
sustainability, and selectivity of various chemical reactions. 

7. Conclusion 
 In this article, we provided a comprehensive review of the 

past, present, and future of nanotechnology in the synthesis and 
development of new catalysts. Considering that the efficiency 
of catalysts has a significant impact on the performance of 
chemical processes and industrial production, the use of 
nanotechnology in the development of new catalysts is of great 
importance. By examining the synthesis and development 
methods of nanocatalysts, significant improvements can be 
made in the efficiency of catalysts, which can be effective in 
protecting the environment and improving the performance of 
industrial processes. 

In addition, nanotechnologies can significantly improve the 
understanding of catalyst behavior as a large system. By using 
nanotechnologies, catalyst behavior can be studied more 
precisely and comprehensively, leading to necessary 
improvements in current catalysts or the creation of new ones. 

In general, the use of nanotechnologies in catalyst 
development is of great importance and can bring fundamental 
improvements in the chemical and petrochemical industries, as 
well as in environmental protection. With the growing trend of 
nanotechnologies, it is expected that the greatest benefits from 
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this technology in the future will be seen in the development of 
new catalysts and improving their efficiency. 
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