
International Journal of Modern Developments in Engineering and Science
Volume 2, Issue 7, July 2023
https://www.ijmdes.com | ISSN (Online): 2583-3138

*Corresponding author: saaraanand1@gmail.com

24

Abstract: This paper aims to provide an empirical study and

comparative analysis of the well-known Deep Learning Models on
the Stanford Question Answering Dataset (SQuAD). Keeping in
mind the enormous data in the current times, SQuAD Dataset
serves as a benchmark for question answering tasks. It aims to
solve the issues pertaining machine comprehension and huge
context-based question answering tasks. This is a challenging
problem in NLP as it requires the model to understand the context
and use its reasoning abilities to accurately respond to questions.
In this study, Natural Language Processing, Exploratory Data
Analysis and Deep Learning Models like Bidirectional LSTMs
(BiLSTM), BERT, DistilBERT, BiDAF, Ensemble Learning,
Backpropagation neural networks and Optimization techniques
have been incorporated for achieving the highest efficiency.
Finally, a comparison of each model’s performance based on
evaluation metrics like accuracy, precision and F1-score has been
done.

Keywords: Natural Language Processing, BiLSTM, BERT,

BiDAF, Ensemble Learning, SQuAD.

1. Introduction
With the ever increasing data in the present times, it becomes

highly important to use proper Deep Learning Models and
Natural Language Processing (NLP) Systems. Interactive
question answering is a challenging task that requires not only
retrieving relevant information but also maintaining a coherent
conversation with the user. This research paper presents a novel
interactive QA model that utilizes NLP technologies to enable
real-time, interactive, and contextually-aware responses to user
queries. Natural Language Processing, commonly abbreviated
as NLP, is a fascinating field of artificial intelligence that
focuses on enabling computers to understand, interpret, and
interact with human language in a way that is both meaningful
and contextually relevant. Natural Language Processing's
(NLP) Question Answering (QA) subfield focuses on
automatically responding to queries presented in natural
language. A QA system's objective is to comprehend the
queries and offer a clear, pertinent response. Numerous real-
world uses for QA systems exist, such as knowledge
management and customer education and service. They may
assist in minimising the time and effort needed to locate
solutions. This model would utilize pretrained language models
like BiLSTM, BERT, DistilBERT and BIDAF. LSTM stands
for Long Short-Term Memory, and it is a type of recurrent

neural network (RNN) architecture. LSTM networks are
designed to overcome the shortcomings of traditional RNNs in
capturing long-term dependencies in sequential data. The key
idea behind LSTM is the introduction of memory cells, which
are responsible for storing and accessing information over long
periods of time. These memory cells have an internal structure
that allows them to learn and forget information based on the
input data and the network's objectives. BiLSTM stands for
Bidirectional Long Short-Term Memory. It is a type of
recurrent neural network (RNN) architecture that combines the
forward and backward information flow to capture
dependencies in sequential data more efficiently. In a traditional
LSTM, information flows only in one direction, from past to
future. However, in certain applications, understanding the
context from both past and future perspectives is important.
BiLSTM addresses this limitation by processing the input
sequence in both forward and backward directions
simultaneously. BERT stands for Bidirectional Encoder
Representations from Transformers. It is a powerful natural
language processing (NLP) model introduced by Google in
2018. BERT is based on the Transformer architecture, which is
a type of deep learning model designed to handle sequential
data efficiently. Unlike previous NLP models that
predominantly relied on a unidirectional approach (e.g.,
LSTM), BERT employs a bidirectional approach, enabling it to
consider both the left and right context of a word
simultaneously. This bidirectional capability allows BERT to
capture more nuanced relationships between words and
improve the understanding of the overall context.
DistilBERT is a small and quick model based on
the BERT architecture. Knowledge distillation is performed
during the pre-training phase to reduce the size of a BERT
model by 40%. To leverage the inductive biases learned by
larger models during pre-training, the authors introduce a triple
loss combining language modeling, distillation and cosine-
distance losses. BIDAF stands for Bi-Directional Attention
Flow, and it is a deep learning model architecture designed for
machine comprehension tasks, specifically for question-
answering. The main objective of BIDAF is to accurately locate
the relevant answer span within a given context paragraph when
posed with a question. By incorporating the attention
mechanism and bi-directional modeling, BIDAF enables the
model to effectively understand the interplay between the

Interactive Question Answering Model using
Natural Language Processing

Saara Anand1*, Ram Kripalu Neelmani2, Naman Manocha3

1,2,3Bachelor of Technology, Department of Computer Science and Engineering, Vellore Institute of Technology, Amaravati, India

Anand et al. International Journal of Modern Developments in Engineering and Science, VOL. 2, NO. 7, JULY 2023 25

question and context, and to accurately identify the answer
span. BIDAF has demonstrated impressive performance on
various question-answering benchmarks, such as the Stanford
Question Answering Dataset (SQuAD), by achieving high
accuracy in locating the correct answer spans within the
provided context paragraphs. Our aim would be to use an
ensemble approach by combining four different language
models, namely BiLSTM, BIDAF, BERT and DistilBERT, to
achieve the highest possible F1 score. Ensemble methods in
machine learning refer to techniques that combine multiple
models to improve predictive performance and generalization.
The core idea behind ensembling is that by aggregating
predictions from diverse models, the ensemble can often
outperform any individual model.

2. Dataset
We have investigated a number of datasets for training and

assessing QA models, including SQuAD, MS MARCO,
BioASQ, TREC QA, Natural Questions (Google AI),
NarrativeQA, and HotpotQA. Each dataset has unique
properties, so selecting a dataset should rely on the project's
specific requirements and the research question. The SQuAD
dataset will be used in our study for training and evaluating as
per our requirements of our QA model. It includes questions
and responses based on experts from several Wikipedia articles,
making it a useful tool for creating reading-capable quality-
assurance models. The dataset consists of questions and context
texts, and within the context paragraph, the model is anticipated
to forecast the answer span. The dataset consists of over
100,000 questions and their corresponding answer spans, all of
which are based on more than 500 Wikipedia articles. The
primary evaluation metric for SQuAD is the F1 score, which
measures the overlap between the predicted answer span and
the ground truth answer span.

3. Proposed Methodology
We downloaded the Squad dataset and preprocessed the data

to extract questions, contexts, and answers for each example.
We then selected four different models for question answering,
including BiLSTM, BIDAF, BERT and DistilBERT. We
trained each model on the Squad dataset using the training split
and evaluated their performance on the validation split. We
used the EM and F1 scores to evaluate the performance of each
model on both the training and validation datasets. To increase
our efficiency and accuracy. We created an ensembling model
that selected the answer with the highest F1 score among the
four models for each question answer pair. Then we moved to
the performance evaluation and evaluated the performance of
the ensembling model on the train and validation datasets using
the EM and F1 scores. We analyzed the results to identify the
strengths and weaknesses of each model and the ensembling
approach, followed by a discussion of the results and drew
conclusions based on the findings, highlighting the strengths
and limitations of the study and suggesting potential directions
for future work.

The first model we have used is of BiLSTM. BiLSTM stands

for Bidirectional Long Short-Term Memory. It is a type of
recurrent neural network (RNN) architecture that combines the
forward and backward information flow to capture
dependencies in sequential data more efficiently. In a traditional
LSTM, information flows only in one direction, from past to
future. However, in certain applications, understanding the
context from both past and future perspectives is important.
GloVe word embeddings are used for BiLSTM. Loading pre-
trained GloVe word embeddings and transforming word tokens
into embeddings. The get_glove_dict() function parses the
GloVe word vectors text file and returns a dictionary with the
words as keys and their respective pre-trained word vectors as
values. The embed() function takes a list of word tokens as
input, transforms each token to lowercase, and then checks
whether it is present in the GloVe embeddings dictionary. If the
token is present, the corresponding word vector is appended to
the vectors list; otherwise, the unknown_vector (pre-computed
vector for unknown words) is appended to the list. Finally, the
function returns a NumPy array of the concatenated word
vectors. The code applies the embed() function to the Paragraph
and Question columns of the train_ds and val_ds data frames,
which contain the tokenised versions of the paragraphs and
questions, respectively. The resulting embeddings are then used
as inputs to the model during training and evaluation.

Loading pre-trained GloVe word embeddings and
transforming word tokens into embeddings. The
get_glove_dict() function parses the GloVe word vectors text
file and returns a dictionary with the words as keys and their
respective pre-trained word vectors as values. The embed()
function takes a list of word tokens as input, transforms each
token to lowercase, and then checks whether it is present in the
GloVe embeddings dictionary. If the token is present, the
corresponding word vector is appended to the vectors list;
otherwise, the unknown_vector (pre-computed vector for
unknown words) is appended to the list. Finally, the function
returns a NumPy array of the concatenated word vectors. The
code applies the embed() function to the Paragraph and
Question columns of the train_ds and val_ds data frames, which
contain the tokenised versions of the paragraphs and questions,
respectively. The resulting embeddings are then used as inputs
to the model during training and evaluation.

Preparing the data for training and validation of a machine
learning model for question- answering task. The data consists
of paragraphs, questions and their respective answers. The
pad_paragraph and pad_question functions are used to pad the
paragraph and question embeddings with zero vectors to make
them of equal length. The maximum length of paragraphs and
questions are pre-defined as paragraph_length and
question_length, respectively. These functions are applied to
the 'Paragraph' and 'Question' columns of the train and
validation datasets using the map function. The resulting
padded paragraphs and questions are converted to Python
lists.The answers' starting and ending token positions are
extracted from the 'Answer' column of the train and validation
datasets. The start and end positions are stored in separate lists
start_train, end_train and start_val, end_val. Finally, all the data
is converted into constant tensors using the tf.constant function.

Anand et al. International Journal of Modern Developments in Engineering and Science, VOL. 2, NO. 7, JULY 2023 26

The padded paragraphs and questions are converted to
np.float32 dtype, while the start and end positions are kept as
np.float32. These tensors will be used to train and validate the
machine- learning.

Implement the co-attention mechanism, a technique used to
model the interaction between two input sequences: a paragraph
and a question. The co-attention layer produces a weighted
representation of each input sequence conditioned on the
other.First, the code computes a scoring matrix by taking the
dot product between the encoded paragraph and the encoded
question and transposing the question matrix to match the
dimensions. The resulting score matrix has dimensions
(batch_size, paragraph_length, question_length).Next, the code
applies a softmax function along the question dimension to
compute a set of question weights for each paragraph word. It
applies a second softmax function along the paragraph
dimension to computing a set of paragraph weights for each
question word. The code then computes a question context
vector for each paragraph word by taking the weighted sum of
the question-encoded matrix using the question weights. This
step computes how much each question word contributes to
each paragraph. The code then concatenates the question-
encoded matrix with the question context matrix along the
feature dimension. The resulting tensor has dimensions
(batch_size, 2 * embedding_size, question_length), which
represent a combined representation of the question and its
contextual information for each paragraph word.
Finally, the code computes a paragraph context vector for each
question word by taking the weighted sum of the concatenated
tensor along the paragraph dimension, using the paragraph
weights. This step computes how much each paragraph
contributes to each question word. The resulting tensor has
dimensions (batch_size,2*embedding_size, paragraph_length),
representing a combined representation of the paragraph and its
contextual information for each question word. This tensor is
used as input to the final layer of the model to make predictions.

We have then moved on to the BiDAF Model. The Bi-
directional Attention Flow (BiDAF) network is a multi-stage
hierarchical process that uses a bi-directional attention flow
mechanism to accomplish query-aware context representation
without early summarization. It expresses context at various
levels of granularity. The advantage of using a bi-directional
attention flow to create query-aware context representations is
that it allows attention at every time step and representations
from lower layers to pass through to the modeling layer above.
The Bi-directional Attention Flow (BiDAF) network is a multi-
stage hierarchical process that uses a bi-directional attention
flow mechanism to accomplish query-aware context
representation without early summarization. It expresses
context at various levels of granularity.

The advantage of using a bi-directional attention flow to
create query-aware context representations is that it allows
attention at every time step and representations from lower
layers to pass through to the modeling layer above.

The most important model we have implemented is that of
BERT. Bidirectional Encoder Representations from
Transformers, or BERT, is a deep learning model that is based

on Transformers. In Transformers, each output element is
connected to each input element, and the weightings between
them are dynamically determined based upon their connection.
This procedure is known as attention in NLP. In the past,
language models could only interpret text input sequentially --
either from right to left or from left to right -- but not
simultaneously. BERT is unique since it can simultaneously
read in both directions. Bidirectionality is the name for this
capacity, which the invention of Transformers made possible.
BERT is pre-trained on two distinct but related NLP tasks—
Masked Language Modeling and Next Sentence Prediction—
using this bidirectional capacity. There are various sizes and
variations of the BERT (Bidirectional Encoder Representations
from Transformers) model, including BERT. This BERT
model, which has 12 transformer layers, 768 hidden units, and
12 self- attention heads, is one of the scaled-down variations. In
languages like German, where case distinctions can alter the
meaning of a phrase, the "cased" in the model's name denotes
that the model uses case information in its training. BERT-base-
cased was pre-trained on massive volumes of text data,
particularly on the BooksCorpus and English Wikipedia, like
previous BERT models. A smaller labelled dataset was used to
focus it on a particular goal, such as sentiment analysis or
question-answering. For a variety of natural language
processing (NLP) tasks, BERT-base-cased is a popular option
because it strikes a reasonable compromise between accuracy
and computational resources. It can be fine-tuned for numerous
downstream tasks, including text classification, question-
answering, and named entity recognition, among others. It is a
suitable starting point for many NLP applications, especially if
you have low resources.

The BERT model is distilled into the DistilBERT model.
During the pre-training phase, knowledge distillation was used
to shrink a BERT model by 40% while maintaining 97% of its
language understanding capabilities and increasing its speed by
60%. Combining language modeling, distillation, and cosine-
distance losses creates a triple loss that makes use of the
inductive biases that larger models picked up during pre-
training. DistilBERT is a lightweight, quick, and small model
that is simple to utilize for on-device applications and costs less
to pre-train.

The path to the JSON file is passed as an argument to the
load_json(path) function, which returns the dataset's JSON
object. First, it uses the built-in Python functions open() and
json.load() to open and read the file, respectively. For
debugging purposes, it then prints the first data item's keys and
length before returning the data. The dataset's JSON object is
passed into the parse_data(data) function, which outputs a
collection of dictionaries. The parsed data is first initialized into
an empty list after the data list has been extracted from the
JSON object. The context and QA values are then extracted
from each item in turn by looping through the data list. The id,
question, answers, answer_start, and answer_end values for
each qas item are extracted, and these values are then used as
keys in a dictionary that is created. The dictionary is then added
to the list of the parsed data. A collection of dictionaries
containing the context, question, and label (start and finish

Anand et al. International Journal of Modern Developments in Engineering and Science, VOL. 2, NO. 7, JULY 2023 27

indices) for each answer in the Squad dataset are the result of
the parse_data(data) function.

We used the load_json(path) function previously defined to
load the train and validation datasets in JSON format. The data
is then parsed into a list of dictionaries including the context,
question, and label information by calling the parse_data(data)
function for each dataset. In order to confirm that the data has
been successfully parsed, it then prints the length of the two
lists. It then uses pd.DataFrame() to turn the two lists of
dictionaries into pandas DataFrames. Finally, it renames the
columns in the DataFrames and uses the apply() function to
retrieve the first element from the Answer Start column. This is
due to the fact that, although the response Start column lists
both the start and end indices of the response, we are only
interested in the start index.

The Lookahead optimizer improves the training process by
"looking ahead" to prevent overshooting in weight updates. The
concept is described in the paper "Lookahead Optimizer: k steps
forward, 1 step back"

Training Loop: The code sets up a training loop with a
specified number of epochs (num_epochs). It iterates through
the data in the train_dataloader, which is created using the
SquadDataset class. In each iteration, it performs the forward
pass, computes the loss, and applies the backward pass to
update the model's parameters.

Lookahead Optimizer: The code initializes an AdamW
optimizer with a learning rate of 5e-5 and then wraps it with the
Lookahead optimizer. The la_steps parameter represents the
number of lookahead steps, which is set to 5. The la_alpha
parameter controls the linear interpolation factor, which is set
to 0.8, meaning the Lookahead optimization interpolates 80%
towards the inner optimizer. The pullback_momentum
parameter is set to "none," which means the momentum is not
pulled back during the lookahead update.

GPU/CPU Handling: The model is moved to the appropriate
device using the device variable, which is determined based on
the availability of a CUDA-compatible GPU.

Fine-Tuning: The training loop runs for the specified number
of epochs, and at the end of each epoch, it prints the progress.
After training, you can save the fine-tuned model using the
save_pretrained method.

 Additionally, hyperparameters such as batch size and
lookahead parameters may need to be tuned based on the
specifics of your dataset and problem.

Fine-Tuning Loop: The code continues with the fine-tuning
process using the Lookahead-optimized AdamW optimizer.
The model is set to train mode (model.train()) and iterates
through the training data in batches. For each batch, the forward
pass is performed to compute the loss, and the backward pass
updates the gradients. The Lookahead optimizer is used to
update the model's parameters with lookahead steps.

Saving Fine-Tuned Model and Tokenizer: After the fine-
tuning loop is completed, the code creates a directory named
MODEL_DIR (if it doesn't exist) and saves both the tokenizer
and the fine-tuned model to that directory using the
save_pretrained method.

Loading Fine-Tuned Model and Tokenizer: Finally, the code

loads the tokenizer and fine-tuned model from the saved
directory using the AutoTokenizer and
AutoModelForQuestionAnswering classes, respectively. This
allows you to use the fine-tuned model for inference on new
data or for further evaluation.

Thus, we have defined the BERT tokenizer and model after
importing the required libraries, followed by importing
pretrained model preprocessing the SQuAD 2.0 training data
after reading it from a JSON file will produce training examples
for the BERT model, then we calculated the total number of
training steps and specify the number of training epochs. We
then utilised the SQuAD 2.0 preprocessed dataset to train the
BERT model and then save the weights of the trained model to
a file. We have created a formula for anticipating responses to
queries based on context followed by reading test data for
SQuAD 2.0 from a JSON file and creating a JSON file with the
anticipated responses.

During preprocessing we used bert tokenizer which takes
question, context, addspecialtoken, maxseqlength, padding,
truncating etc and gives us input_ids which are token ids
assigned to tokens, token_type_ids which are used to
differentiate various tokens present in the input_ids. Like it will
assign value 0 to question tokens, value 1 to context tokens,
value 2 to special tokens.

For every question, context and answer we generate the
above-mentioned information by using tokensizer and we
calculate start position and end position of answer in the entire
tokens generated and we keep all the data that we just computed
in the form a dictionary and we append all these dictionaries in
to array which basically becomes a training data.

Now we use below code to make our optimiser and
scheduler:

optimizer = AdamW(model.parameters(), lr=2e-5, eps=1e-8)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps)

Now we train the code by making batches of batchsize = 32
and for each batch we make a new tensor specially for the
current batch and we pass it through the model to get output.
After generating output we can calculate loss and
backpropagate it using optimizer and scheduler.

Once the training is done we can save the model check
points.

Now we test our test data by making batches of specific size
and passing these batches to a function which takes batch of
questions, batch of contexts, model and tokenizer which returns
batch of computed answers. We store this information in a
dictionary where we key is id of question and answer is the
answer computed. In this way we generate a predicted test file
for test data which can later be used for calculating F1 score.

One other approach to solve this problem is to use a
simpletransformers which has QuestionAnsweringModel,
QuestionAnsweringArgs modules in it. QuestionAnswerting
Model can load pretrained BERT and can train the model
according to the arguments we define in Question Answering
Args modules in it. This approach can completely eliminate bert
tokeniser approach discussed above and can make the code

Anand et al. International Journal of Modern Developments in Engineering and Science, VOL. 2, NO. 7, JULY 2023 28

simpler and readable for the coder.
The more the number of epochs trained the better the results

that we achieved. Loss really decreased in between epochs
making model a better one. During epoch one the loss was at
0.9 then it dropped to 0.53 and then to 0.43 and then the model
might reach local minimum after 2 more epochs which requires
us to change the hyperparameters to make model to move from
the minima.

The main idea we have followed here is to use the Ensemble
approach to achieve a higher F1 Score.

Ensemble learning is a general meta-approach to machine
learning that seeks better predictive performance by combining
the predictions from multiple models.

In the first step of creating ensemble architecture three base
models have been trained on the full training set and evaluated
against the evaluation data. The architectures have been
implemented in PyTorch.

Presented ensemble model is based on a class-specific
weighted voting. Algorithm 1 presents, how the class-specific
weights are obtained. It is an average F1 metric obtained after
evaluation the model on all questions from specific class.
Algorithm 2 describes, how does the voting mechanism work.
It gathers all candidate answers from all models and if at least
two models give duplicate answer their weights are added.
Finally, the candidate answer is this one with highest weight or
returned by globally best model (in specific class) when no
duplicated answer exists.

Our main goal is to check the working of ensemble models
can improve best machine comprehension architectures. At the
first stage one of the best four models were chosen for studying
their accuracy using different techniques. These are
DistilBERT, Bidirectional Attention Flow(BiDAF) ,
Bidirectional LSTM (BiLSTM) and Bidirectional Encoder
Representations from Transformers(BERT) . All the models
use deep learning combined with different types of attention
mechanisms. Error analysis shows that each model obtains
better results on different type of questions. Therefore, the
models could be combined together in order to produce a better
outcome for all questions of any kind. One of the most obvious
approach is to build ensemble model. The main goal is to avoid
weaknesses and use all strengths of analysed architectures. The
idea of building ensemble models is to combine predictions
from different, well performing and separately trained models
and calculate the actual prediction as the average or weighted
predictions. In presented work, an answer comparison
mechanism has been defined and implemented, to obtain a final
answer based on separated answers given by chosen models.
Before building the ensemble model comparative studies were
performed between models, with particular reference to their
attention layers and analysis of the results gained by models,
including error analysis. The SQuAD dataset was used to train
and evaluate the models. The proposed ensemble mechanism
brings an improvement in predictions accuracy.

4. Results

Fig. 1. Architectural diagram of BiLSTM

Fig. 2. Architectural diagram of BERT

Anand et al. International Journal of Modern Developments in Engineering and Science, VOL. 2, NO. 7, JULY 2023 29

Fig. 3. Architectural diagram of DistilBERT

Fig. 4. Architectural diagram of BIDAF

Fig. 5. Basic working of the models

Table 1

EM and F1 scores of each model
MODEL Dataset EM Score F1 score
Bi LSTM Dev 0.0003725182137 0.2587250052116
Bi LSTM Train 0.0004989127943 0.2394558902758
Bi DAF Dev 0.5398709732878 0.6649952873842
Bi DAF Train 0.5049570942344 0.6688789641243
BERT Dev 0.1347834324908 0.4334487891223
BERT Train 0.1148590349743 0.4149308943890
Distil BERT Dev 0.5644257924784 0.7549088089954
Distil BERT Train 0.7198289083405 0.8709847094735

Table 2

Ensemble using BiLSTM, BERT and BIDAF
MODEL Dataset EM Score F1 score
Ensemble

Train 0.5589492384289 0.803908844944
Dev 0.6128290383983 0.833848949894

Table 3

Ensemble using BiLSTM, BERT, BIDAF and DistilBERT
MODEL Dataset EM Score F1 score
Ensemble

Train 0.7834273423834 0.912238984939
Dev 0.7734647272782 0.898234239483

Fig. 6. Architecture diagram of ensemble model

Anand et al. International Journal of Modern Developments in Engineering and Science, VOL. 2, NO. 7, JULY 2023 30

Fig. 6. Finetuning BERT using Adadelta

Fig. 7. Finetuning BERT using Ada halved

Fig. 8. Finetuning BERT using Ada halved + Optim Adam

Fig. 9. Loss graph for BERT

Fig. 10. Accuracy graph of our ensembled model

Fig. 11. Application I of our final model

Fig. 12. Application II of our final model

5. Conclusion and Future Work
In this project, we explored different models for question

answering on the Squad dataset, including BiLSTM, BIDAF,
BERT, and DistilBERT. We evaluated these models based on
their EM and F1 scores on the train and validation datasets. The
BIDAF model achieved an F1 score of 0.664 on the validation
dataset, which is the highest among the models we tested. The
BiLSTM model performed the worst, with an F1 score of only
0.239. The DistilBERT model achieved an F1 score of 0.754,
which is also relatively high. The BERT model achieved an F1
score of 0.433 on validation dataset and 0.414 on train Dataset.
We then created an ensembling model that chose the answer
with the best F1 score for each question answer pair. This model

Anand et al. International Journal of Modern Developments in Engineering and Science, VOL. 2, NO. 7, JULY 2023 31

achieved an F1 score of 0.912 on the train dataset and 0.898 on
the validation dataset, which outperformed all individual
models when ensembled BiLSTM, BIDAF and BERT.

Our Question Answering Model was successful and gave
accurate results. The results demonstrate that the Squad dataset
may be successfully used to answer questions using the BIDAF,
DistilBERT, and ensembling models. On the other hand, BERT
model needed more training to perform better and BiLSTM
struggled in this task. It's crucial to note that the DistilBERT
model outperformed the BERT model in terms of F1 score and
inference time, making it potentially more useful for real-world
applications where speed is a key factor. The ensembling
method was successful in enhancing the performance of
individual models, indicating that merging different models can
frequently produce superior outcomes. Thus, choosing the
appropriate model is essential for getting excellent performance
in question-answering on the Squad dataset, according to the
findings of our study. For this work, BIDAF and DistilBERT
are useful models, and ensembling can boost performance even
more.

Though there's always room for improvement, future
research can examine more sophisticated models and methods
to increase the performance of question-answering systems.

Given the rapidly evolving nature of technology, there are
several potential future directions and areas of work that
researchers and developers may explore to further improve
these technologies, like to develop more efficient and faster
models without compromising on performance. This could
involve exploring techniques like model compression,
quantization, and knowledge distillation. Focusing on

deploying QA models in real-world applications such as
customer support, virtual assistants, or search engines, where
they can provide immediate value to users. We could also plan
to combine text-based QA with other modalities like images,
audio, or video, enabling models to answer questions that
involve multi-modal inputs, for increased efficiency.

References
[1] Rajpurkar, P., Jia, R., & Liang, P. (2018). Know what you don't know:

Unanswerable questions for SQuAD.
[2] Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad:

100,000+ questions for machine comprehension of text.
[3] Yatskar, M. (2018). A qualitative comparison of CoQA, SQuAD 2.0 and

QuAC.
[4] Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a

distilled version of BERT: smaller, faster, cheaper and lighter.
[5] Alzubi, J. A., Jain, R., Singh, A., Parwekar, P., & Gupta, M. (2021).

COBERT: COVID-19 question answering system using BERT. Arabian
journal for science and engineering, 1-11.

[6] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-
training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

[7] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V.
(2019). Roberta: A robustly optimized bert pretraining approach.
Min, S., Seo, M., & Hajishirzi, H. (2017). Question answering through
transfer learning from large fine-grained supervision data.

[8] Jia, R., & Liang, P. (2017). Adversarial examples for evaluating reading
comprehension systems.

[9] Nsaka, P., Dong, J., & Lee, A. Optimizing Match-LSTM for SQuAD v2.
0.

[10] Huang, Z., Xu, P., Liang, D., Mishra, A., & Xiang, B. (2020). TRANS-
BLSTM: Transformer with bidirectional LSTM for language
understanding.

[11] Wang, W., Yang, N., Wei, F., Chang, B., & Zhou, M. (2017, July). Gated
self-matching networks for reading comprehension and question
answering. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics, Volume 1: Long Papers, pp. 189-198.

	1. Introduction
	2. Dataset
	3. Proposed Methodology
	4. Results
	5. Conclusion and Future Work
	References

