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Abstract: This paper aims to provide an empirical study and 

comparative analysis of the well-known Deep Learning Models on 
the Stanford Question Answering Dataset (SQuAD). Keeping in 
mind the enormous data in the current times, SQuAD Dataset 
serves as a benchmark for question answering tasks. It aims to 
solve the issues pertaining machine comprehension and huge 
context-based question answering tasks. This is a challenging 
problem in NLP as it requires the model to understand the context 
and use its reasoning abilities to accurately respond to questions. 
In this study, Natural Language Processing, Exploratory Data 
Analysis and Deep Learning Models like Bidirectional LSTMs 
(BiLSTM), BERT, DistilBERT, BiDAF, Ensemble Learning, 
Backpropagation neural networks and Optimization techniques 
have been incorporated for achieving the highest efficiency. 
Finally, a comparison of each model’s performance based on 
evaluation metrics like accuracy, precision and F1-score has been 
done. 

 
Keywords: Natural Language Processing, BiLSTM, BERT, 

BiDAF, Ensemble Learning, SQuAD. 

1. Introduction 
With the ever increasing data in the present times, it becomes 

highly important to use proper Deep Learning Models and 
Natural Language Processing (NLP) Systems. Interactive 
question answering is a challenging task that requires not only 
retrieving relevant information but also maintaining a coherent 
conversation with the user. This research paper presents a novel 
interactive QA model that utilizes NLP technologies to enable 
real-time, interactive, and contextually-aware responses to user 
queries. Natural Language Processing, commonly abbreviated 
as NLP, is a fascinating field of artificial intelligence that 
focuses on enabling computers to understand, interpret, and 
interact with human language in a way that is both meaningful 
and contextually relevant. Natural Language Processing's 
(NLP) Question Answering (QA) subfield focuses on 
automatically responding to queries presented in natural 
language. A QA system's objective is to comprehend the 
queries and offer a clear, pertinent response. Numerous real-
world uses for QA systems exist, such as knowledge 
management and customer education and service. They may 
assist in minimising the time and effort needed to locate 
solutions. This model would utilize pretrained language models 
like BiLSTM, BERT, DistilBERT and BIDAF. LSTM stands 
for Long Short-Term Memory, and it is a type of recurrent  

 
neural network (RNN) architecture. LSTM networks are 
designed to overcome the shortcomings of traditional RNNs in 
capturing long-term dependencies in sequential data. The key 
idea behind LSTM is the introduction of memory cells, which 
are responsible for storing and accessing information over long 
periods of time. These memory cells have an internal structure 
that allows them to learn and forget information based on the 
input data and the network's objectives. BiLSTM stands for 
Bidirectional Long Short-Term Memory. It is a type of 
recurrent neural network (RNN) architecture that combines the 
forward and backward information flow to capture 
dependencies in sequential data more efficiently. In a traditional 
LSTM, information flows only in one direction, from past to 
future. However, in certain applications, understanding the 
context from both past and future perspectives is important. 
BiLSTM addresses this limitation by processing the input 
sequence in both forward and backward directions 
simultaneously. BERT stands for Bidirectional Encoder 
Representations from Transformers. It is a powerful natural 
language processing (NLP) model introduced by Google in 
2018. BERT is based on the Transformer architecture, which is 
a type of deep learning model designed to handle sequential 
data efficiently. Unlike previous NLP models that 
predominantly relied on a unidirectional approach (e.g., 
LSTM), BERT employs a bidirectional approach, enabling it to 
consider both the left and right context of a word 
simultaneously. This bidirectional capability allows BERT to 
capture more nuanced relationships between words and 
improve the understanding of the overall context. 
DistilBERT is a small and quick model based on 
the BERT architecture. Knowledge distillation is performed 
during the pre-training phase to reduce the size of a BERT 
model by 40%. To leverage the inductive biases learned by 
larger models during pre-training, the authors introduce a triple 
loss combining language modeling, distillation and cosine-
distance losses. BIDAF stands for Bi-Directional Attention 
Flow, and it is a deep learning model architecture designed for 
machine comprehension tasks, specifically for question-
answering. The main objective of BIDAF is to accurately locate 
the relevant answer span within a given context paragraph when 
posed with a question. By incorporating the attention 
mechanism and bi-directional modeling, BIDAF enables the 
model to effectively understand the interplay between the 
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question and context, and to accurately identify the answer 
span. BIDAF has demonstrated impressive performance on 
various question-answering benchmarks, such as the Stanford 
Question Answering Dataset (SQuAD), by achieving high 
accuracy in locating the correct answer spans within the 
provided context paragraphs. Our aim would be to use an 
ensemble approach by combining four different language 
models, namely BiLSTM, BIDAF, BERT and DistilBERT, to 
achieve the highest possible F1 score. Ensemble methods in 
machine learning refer to techniques that combine multiple 
models to improve predictive performance and generalization. 
The core idea behind ensembling is that by aggregating 
predictions from diverse models, the ensemble can often 
outperform any individual model. 

2. Dataset 
We have investigated a number of datasets for training and 

assessing QA models, including SQuAD, MS MARCO, 
BioASQ, TREC QA, Natural Questions (Google AI), 
NarrativeQA, and HotpotQA. Each dataset has unique 
properties, so selecting a dataset should rely on the project's 
specific requirements and the research question. The SQuAD 
dataset will be used in our study for training and evaluating as 
per our requirements of our QA model. It includes questions 
and responses based on experts from several Wikipedia articles, 
making it a useful tool for creating reading-capable quality-
assurance models. The dataset consists of questions and context 
texts, and within the context paragraph, the model is anticipated 
to forecast the answer span. The dataset consists of over 
100,000 questions and their corresponding answer spans, all of 
which are based on more than 500 Wikipedia articles. The 
primary evaluation metric for SQuAD is the F1 score, which 
measures the overlap between the predicted answer span and 
the ground truth answer span. 

3. Proposed Methodology 
We downloaded the Squad dataset and preprocessed the data 

to extract questions, contexts, and answers for each example. 
We then selected four different models for question answering, 
including BiLSTM, BIDAF, BERT and DistilBERT. We 
trained each model on the Squad dataset using the training split 
and evaluated their performance on the validation split. We 
used the EM and F1 scores to evaluate the performance of each 
model on both the training and validation datasets. To increase 
our efficiency and accuracy. We created an ensembling model 
that selected the answer with the highest F1 score among the 
four models for each question answer pair. Then we moved to 
the performance evaluation and evaluated the performance of 
the ensembling model on the train and validation datasets using 
the EM and F1 scores. We analyzed the results to identify the 
strengths and weaknesses of each model and the ensembling 
approach, followed by a discussion of the results and drew 
conclusions based on the findings, highlighting the strengths 
and limitations of the study and suggesting potential directions 
for future work.  

The first model we have used is of BiLSTM. BiLSTM stands 

for Bidirectional Long Short-Term Memory. It is a type of 
recurrent neural network (RNN) architecture that combines the 
forward and backward information flow to capture 
dependencies in sequential data more efficiently. In a traditional 
LSTM, information flows only in one direction, from past to 
future. However, in certain applications, understanding the 
context from both past and future perspectives is important. 
GloVe word embeddings are used for BiLSTM. Loading pre-
trained GloVe word embeddings and transforming word tokens 
into embeddings. The get_glove_dict() function parses the 
GloVe word vectors text file and returns a dictionary with the 
words as keys and their respective pre-trained word vectors as 
values. The embed() function takes a list of word tokens as 
input, transforms each token to lowercase, and then checks 
whether it is present in the GloVe embeddings dictionary. If the 
token is present, the corresponding word vector is appended to 
the vectors list; otherwise, the unknown_vector (pre-computed 
vector for unknown words) is appended to the list. Finally, the 
function returns a NumPy array of the concatenated word 
vectors. The code applies the embed() function to the Paragraph 
and Question columns of the train_ds and val_ds data frames, 
which contain the tokenised versions of the paragraphs and 
questions, respectively. The resulting embeddings are then used 
as inputs to the model during training and evaluation.  

Loading pre-trained GloVe word embeddings and 
transforming word tokens into embeddings. The 
get_glove_dict() function parses the GloVe word vectors text 
file and returns a dictionary with the words as keys and their 
respective pre-trained word vectors as values. The embed() 
function takes a list of word tokens as input, transforms each 
token to lowercase, and then checks whether it is present in the 
GloVe embeddings dictionary. If the token is present, the 
corresponding word vector is appended to the vectors list; 
otherwise, the unknown_vector (pre-computed vector for 
unknown words) is appended to the list. Finally, the function 
returns a NumPy array of the concatenated word vectors. The 
code applies the embed() function to the Paragraph and 
Question columns of the train_ds and val_ds data frames, which 
contain the tokenised versions of the paragraphs and questions, 
respectively. The resulting embeddings are then used as inputs 
to the model during training and evaluation. 

Preparing the data for training and validation of a machine 
learning model for question- answering task. The data consists 
of paragraphs, questions and their respective answers. The 
pad_paragraph and pad_question functions are used to pad the 
paragraph and question embeddings with zero vectors to make 
them of equal length. The maximum length of paragraphs and 
questions are pre-defined as paragraph_length and 
question_length, respectively. These functions are applied to 
the 'Paragraph' and 'Question' columns of the train and 
validation datasets using the map function. The resulting 
padded paragraphs and questions are converted to Python 
lists.The answers' starting and ending token positions are 
extracted from the 'Answer' column of the train and validation 
datasets. The start and end positions are stored in separate lists 
start_train, end_train and start_val, end_val. Finally, all the data 
is converted into constant tensors using the tf.constant function. 
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The padded paragraphs and questions are converted to 
np.float32 dtype, while the start and end positions are kept as 
np.float32. These tensors will be used to train and validate the 
machine- learning. 

Implement the co-attention mechanism, a technique used to 
model the interaction between two input sequences: a paragraph 
and a question. The co-attention layer produces a weighted 
representation of each input sequence conditioned on the 
other.First, the code computes a scoring matrix by taking the 
dot product between the encoded paragraph and the encoded 
question and transposing the question matrix to match the 
dimensions. The resulting score matrix has dimensions 
(batch_size, paragraph_length, question_length).Next, the code 
applies a softmax function along the question dimension to 
compute a set of question weights for each paragraph word. It 
applies a second softmax function along the paragraph 
dimension to computing a set of paragraph weights for each 
question word. The code then computes a question context 
vector for each paragraph word by taking the weighted sum of 
the question-encoded matrix using the question weights. This 
step computes how much each question word contributes to 
each paragraph. The code then concatenates the question-
encoded matrix with the question context matrix along the 
feature dimension. The resulting tensor has dimensions 
(batch_size, 2 * embedding_size, question_length), which 
represent a combined representation of the question and its 
contextual information for each paragraph word. 
Finally, the code computes a paragraph context vector for each 
question word by taking the weighted sum of the concatenated 
tensor along the paragraph dimension, using the paragraph 
weights. This step computes how much each paragraph 
contributes to each question word. The resulting tensor has 
dimensions (batch_size,2*embedding_size, paragraph_length), 
representing a combined representation of the paragraph and its 
contextual information for each question word. This tensor is 
used as input to the final layer of the model to make predictions.  

We have then moved on to the BiDAF Model. The Bi-
directional Attention Flow (BiDAF) network is a multi-stage 
hierarchical process that uses a bi-directional attention flow 
mechanism to accomplish query-aware context representation 
without early summarization. It expresses context at various 
levels of granularity. The advantage of using a bi-directional 
attention flow to create query-aware context representations is 
that it allows attention at every time step and representations 
from lower layers to pass through to the modeling layer above. 
The Bi-directional Attention Flow (BiDAF) network is a multi-
stage hierarchical process that uses a bi-directional attention 
flow mechanism to accomplish query-aware context 
representation without early summarization. It expresses 
context at various levels of granularity.  

The advantage of using a bi-directional attention flow to 
create query-aware context representations is that it allows 
attention at every time step and representations from lower 
layers to pass through to the modeling layer above. 

The most important model we have implemented is that of 
BERT. Bidirectional Encoder Representations from 
Transformers, or BERT, is a deep learning model that is based 

on Transformers. In Transformers, each output element is 
connected to each input element, and the weightings between 
them are dynamically determined based upon their connection. 
This procedure is known as attention in NLP. In the past, 
language models could only interpret text input sequentially -- 
either from right to left or from left to right -- but not 
simultaneously. BERT is unique since it can simultaneously 
read in both directions. Bidirectionality is the name for this 
capacity, which the invention of Transformers made possible. 
BERT is pre-trained on two distinct but related NLP tasks—
Masked Language Modeling and Next Sentence Prediction—
using this bidirectional capacity. There are various sizes and 
variations of the BERT (Bidirectional Encoder Representations 
from Transformers) model, including BERT. This BERT 
model, which has 12 transformer layers, 768 hidden units, and 
12 self- attention heads, is one of the scaled-down variations. In 
languages like German, where case distinctions can alter the 
meaning of a phrase, the "cased" in the model's name denotes 
that the model uses case information in its training. BERT-base-
cased was pre-trained on massive volumes of text data, 
particularly on the BooksCorpus and English Wikipedia, like 
previous BERT models. A smaller labelled dataset was used to 
focus it on a particular goal, such as sentiment analysis or 
question-answering. For a variety of natural language 
processing (NLP) tasks, BERT-base-cased is a popular option 
because it strikes a reasonable compromise between accuracy 
and computational resources. It can be fine-tuned for numerous 
downstream tasks, including text classification, question-
answering, and named entity recognition, among others. It is a 
suitable starting point for many NLP applications, especially if 
you have low resources.  

The BERT model is distilled into the DistilBERT model. 
During the pre-training phase, knowledge distillation was used 
to shrink a BERT model by 40% while maintaining 97% of its 
language understanding capabilities and increasing its speed by 
60%. Combining language modeling, distillation, and cosine-
distance losses creates a triple loss that makes use of the 
inductive biases that larger models picked up during pre-
training. DistilBERT is a lightweight, quick, and small model 
that is simple to utilize for on-device applications and costs less 
to pre-train. 

The path to the JSON file is passed as an argument to the 
load_json(path) function, which returns the dataset's JSON 
object. First, it uses the built-in Python functions open() and 
json.load() to open and read the file, respectively. For 
debugging purposes, it then prints the first data item's keys and 
length before returning the data. The dataset's JSON object is 
passed into the parse_data(data) function, which outputs a 
collection of dictionaries. The parsed data is first initialized into 
an empty list after the data list has been extracted from the 
JSON object. The context and QA values are then extracted 
from each item in turn by looping through the data list. The id, 
question, answers, answer_start, and answer_end values for 
each qas item are extracted, and these values are then used as 
keys in a dictionary that is created. The dictionary is then added 
to the list of the parsed data. A collection of dictionaries 
containing the context, question, and label (start and finish 
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indices) for each answer in the Squad dataset are the result of 
the parse_data(data) function. 

We used the load_json(path) function previously defined to 
load the train and validation datasets in JSON format. The data 
is then parsed into a list of dictionaries including the context, 
question, and label information by calling the parse_data(data) 
function for each dataset. In order to confirm that the data has 
been successfully parsed, it then prints the length of the two 
lists. It then uses pd.DataFrame() to turn the two lists of 
dictionaries into pandas DataFrames. Finally, it renames the 
columns in the DataFrames and uses the apply() function to 
retrieve the first element from the Answer Start column. This is 
due to the fact that, although the response Start column lists 
both the start and end indices of the response, we are only 
interested in the start index. 

The Lookahead optimizer improves the training process by 
"looking ahead" to prevent overshooting in weight updates. The 
concept is described in the paper "Lookahead Optimizer: k steps 
forward, 1 step back"  

Training Loop: The code sets up a training loop with a 
specified number of epochs (num_epochs). It iterates through 
the data in the train_dataloader, which is created using the 
SquadDataset class. In each iteration, it performs the forward 
pass, computes the loss, and applies the backward pass to 
update the model's parameters. 

Lookahead Optimizer: The code initializes an AdamW 
optimizer with a learning rate of 5e-5 and then wraps it with the 
Lookahead optimizer. The la_steps parameter represents the 
number of lookahead steps, which is set to 5. The la_alpha 
parameter controls the linear interpolation factor, which is set 
to 0.8, meaning the Lookahead optimization interpolates 80% 
towards the inner optimizer. The pullback_momentum 
parameter is set to "none," which means the momentum is not 
pulled back during the lookahead update. 

GPU/CPU Handling: The model is moved to the appropriate 
device using the device variable, which is determined based on 
the availability of a CUDA-compatible GPU. 

Fine-Tuning: The training loop runs for the specified number 
of epochs, and at the end of each epoch, it prints the progress. 
After training, you can save the fine-tuned model using the 
save_pretrained method. 

 Additionally, hyperparameters such as batch size and 
lookahead parameters may need to be tuned based on the 
specifics of your dataset and problem. 

Fine-Tuning Loop: The code continues with the fine-tuning 
process using the Lookahead-optimized AdamW optimizer. 
The model is set to train mode (model.train()) and iterates 
through the training data in batches. For each batch, the forward 
pass is performed to compute the loss, and the backward pass 
updates the gradients. The Lookahead optimizer is used to 
update the model's parameters with lookahead steps. 

Saving Fine-Tuned Model and Tokenizer: After the fine-
tuning loop is completed, the code creates a directory named 
MODEL_DIR (if it doesn't exist) and saves both the tokenizer 
and the fine-tuned model to that directory using the 
save_pretrained method. 

Loading Fine-Tuned Model and Tokenizer: Finally, the code 

loads the tokenizer and fine-tuned model from the saved 
directory using the AutoTokenizer and 
AutoModelForQuestionAnswering classes, respectively. This 
allows you to use the fine-tuned model for inference on new 
data or for further evaluation. 

Thus, we have defined the BERT tokenizer and model after 
importing the required libraries, followed by importing 
pretrained model preprocessing the SQuAD 2.0 training data 
after reading it from a JSON file will produce training examples 
for the BERT model, then we calculated the total number of 
training steps and specify the number of training epochs. We 
then utilised the SQuAD 2.0 preprocessed dataset to train the 
BERT model and then save the weights of the trained model to 
a file. We have created a formula for anticipating responses to 
queries based on context followed by reading test data for 
SQuAD 2.0 from a JSON file and creating a JSON file with the 
anticipated responses.  

During preprocessing we used bert tokenizer which takes 
question, context, addspecialtoken, maxseqlength, padding, 
truncating etc and gives us input_ids which are token ids 
assigned to tokens, token_type_ids which are used to 
differentiate various tokens present in the input_ids. Like it will 
assign value 0 to question tokens, value 1 to context tokens, 
value 2 to special tokens.  

For every question, context and answer we generate the 
above-mentioned information by using tokensizer and we 
calculate start position and end position of answer in the entire 
tokens generated and we keep all the data that we just computed 
in the form a dictionary and we append all these dictionaries in 
to array which basically becomes a training data.  

Now we use below code to make our optimiser and 
scheduler: 

optimizer = AdamW(model.parameters(), lr=2e-5, eps=1e-8) 
scheduler = get_linear_schedule_with_warmup(optimizer, 
num_warmup_steps=0, 
num_training_steps=num_training_steps)  

Now we train the code by making batches of batchsize = 32 
and for each batch we make a new tensor specially for the 
current batch and we pass it through the model to get output. 
After generating output we can calculate loss and 
backpropagate it using optimizer and scheduler.  

Once the training is done we can save the model check 
points.  

Now we test our test data by making batches of specific size 
and passing these batches to a function which takes batch of 
questions, batch of contexts, model and tokenizer which returns 
batch of computed answers. We store this information in a 
dictionary where we key is id of question and answer is the 
answer computed. In this way we generate a predicted test file 
for test data which can later be used for calculating F1 score.  

One other approach to solve this problem is to use a 
simpletransformers which has QuestionAnsweringModel, 
QuestionAnsweringArgs modules in it. QuestionAnswerting 
Model can load pretrained BERT and can train the model 
according to the arguments we define in Question Answering 
Args modules in it. This approach can completely eliminate bert 
tokeniser approach discussed above and can make the code 



Anand et al.                                                               International Journal of Modern Developments in Engineering and Science, VOL. 2, NO. 7, JULY 2023 28 

simpler and readable for the coder.  
The more the number of epochs trained the better the results 

that we achieved. Loss really decreased in between epochs 
making model a better one. During epoch one the loss was at 
0.9 then it dropped to 0.53 and then to 0.43 and then the model 
might reach local minimum after 2 more epochs which requires 
us to change the hyperparameters to make model to move from 
the minima.  

The main idea we have followed here is to use the Ensemble 
approach to achieve a higher F1 Score.  

Ensemble learning is a general meta-approach to machine 
learning that seeks better predictive performance by combining 
the predictions from multiple models. 

In the first step of creating ensemble architecture three base 
models have been trained on the full training set and evaluated 
against the evaluation data. The architectures have been 
implemented in PyTorch.  

Presented ensemble model is based on a class-specific 
weighted voting. Algorithm 1 presents, how the class-specific 
weights are obtained. It is an average F1 metric obtained after 
evaluation the model on all questions from specific class. 
Algorithm 2 describes, how does the voting mechanism work. 
It gathers all candidate answers from all models and if at least 
two models give duplicate answer their weights are added. 
Finally, the candidate answer is this one with highest weight or 
returned by globally best model (in specific class) when no 
duplicated answer exists. 

Our main goal is to check the working of ensemble models 
can improve best machine comprehension architectures. At the 
first stage one of the best four models were chosen for studying 
their accuracy using different techniques. These are 
DistilBERT, Bidirectional Attention Flow(BiDAF) , 
Bidirectional LSTM (BiLSTM) and Bidirectional Encoder 
Representations from Transformers(BERT) . All the models 
use deep learning combined with different types of attention 
mechanisms. Error analysis shows that each model obtains 
better results on different type of questions. Therefore, the 
models could be combined together in order to produce a better 
outcome for all questions of any kind. One of the most obvious 
approach is to build ensemble model. The main goal is to avoid 
weaknesses and use all strengths of analysed architectures. The 
idea of building ensemble models is to combine predictions 
from different, well performing and separately trained models 
and calculate the actual prediction as the average or weighted 
predictions. In presented work, an answer comparison 
mechanism has been defined and implemented, to obtain a final 
answer based on separated answers given by chosen models. 
Before building the ensemble model comparative studies were 
performed between models, with particular reference to their 
attention layers and analysis of the results gained by models, 
including error analysis. The SQuAD dataset was used to train 
and evaluate the models. The proposed ensemble mechanism 
brings an improvement in predictions accuracy. 

4. Results 

 
Fig. 1.  Architectural diagram of BiLSTM 

 

 
Fig. 2.  Architectural diagram of BERT 
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Fig. 3.  Architectural diagram of DistilBERT 

 

 
Fig. 4.  Architectural diagram of BIDAF 

 

 
Fig. 5.  Basic working of the models 

 
Table 1 

EM and F1 scores of each model 
MODEL Dataset EM Score F1 score 
Bi LSTM Dev 0.0003725182137 0.2587250052116 
Bi LSTM Train 0.0004989127943 0.2394558902758 
Bi DAF Dev 0.5398709732878 0.6649952873842 
Bi DAF Train 0.5049570942344 0.6688789641243 
BERT Dev 0.1347834324908 0.4334487891223 
BERT Train 0.1148590349743 0.4149308943890 
Distil BERT Dev 0.5644257924784 0.7549088089954 
Distil BERT Train 0.7198289083405 0.8709847094735 

 
Table 2 

Ensemble using BiLSTM, BERT and BIDAF 
MODEL Dataset EM Score F1 score 
Ensemble 
 

Train 0.5589492384289 0.803908844944 
Dev 0.6128290383983 0.833848949894 

 
Table 3 

Ensemble using BiLSTM, BERT, BIDAF and DistilBERT 
MODEL Dataset EM Score F1 score 
Ensemble 
 

Train 0.7834273423834 0.912238984939 
Dev 0.7734647272782 0.898234239483 

 
Fig. 6.  Architecture diagram of ensemble model 
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Fig. 6.  Finetuning BERT using Adadelta 

 

 
Fig. 7.  Finetuning BERT using Ada halved 

 

 
Fig. 8.  Finetuning BERT using Ada halved + Optim Adam 

 

 
Fig. 9.  Loss graph for BERT 

 

 
Fig. 10.  Accuracy graph of our ensembled model 

 

 
Fig. 11.  Application I of our final model 

 

 
Fig. 12.  Application II of our final model 

5. Conclusion and Future Work 
In this project, we explored different models for question 

answering on the Squad dataset, including BiLSTM, BIDAF, 
BERT, and DistilBERT. We evaluated these models based on 
their EM and F1 scores on the train and validation datasets. The 
BIDAF model achieved an F1 score of 0.664 on the validation 
dataset, which is the highest among the models we tested. The 
BiLSTM model performed the worst, with an F1 score of only 
0.239. The DistilBERT model achieved an F1 score of 0.754, 
which is also relatively high. The BERT model achieved an F1 
score of 0.433 on validation dataset and 0.414 on train Dataset. 
We then created an ensembling model that chose the answer 
with the best F1 score for each question answer pair. This model 
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achieved an F1 score of 0.912 on the train dataset and 0.898 on 
the validation dataset, which outperformed all individual 
models when ensembled BiLSTM, BIDAF and BERT. 

Our Question Answering Model was successful and gave 
accurate results. The results demonstrate that the Squad dataset 
may be successfully used to answer questions using the BIDAF, 
DistilBERT, and ensembling models. On the other hand, BERT 
model needed more training to perform better and BiLSTM 
struggled in this task. It's crucial to note that the DistilBERT 
model outperformed the BERT model in terms of F1 score and 
inference time, making it potentially more useful for real-world 
applications where speed is a key factor. The ensembling 
method was successful in enhancing the performance of 
individual models, indicating that merging different models can 
frequently produce superior outcomes. Thus, choosing the 
appropriate model is essential for getting excellent performance 
in question-answering on the Squad dataset, according to the 
findings of our study. For this work, BIDAF and DistilBERT 
are useful models, and ensembling can boost performance even 
more. 

Though there's always room for improvement, future 
research can examine more sophisticated models and methods 
to increase the performance of question-answering systems. 

Given the rapidly evolving nature of technology, there are 
several potential future directions and areas of work that 
researchers and developers may explore to further improve 
these technologies, like to develop more efficient and faster 
models without compromising on performance. This could 
involve exploring techniques like model compression, 
quantization, and knowledge distillation. Focusing on 

deploying QA models in real-world applications such as 
customer support, virtual assistants, or search engines, where 
they can provide immediate value to users. We could also plan 
to combine text-based QA with other modalities like images, 
audio, or video, enabling models to answer questions that 
involve multi-modal inputs, for increased efficiency. 
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