
International Journal of Modern Developments in Engineering and Science
Volume 2, Issue 12, December 2023
https://www.ijmdes.com | ISSN (Online): 2583-3138

*Corresponding author: saikiranshinde01@gmail.com

28

Abstract: This project prioritizes both low power consumption

and space efficiency while improving AES implementation for
Internet of Things devices with limited resources. Clock gating
methods and the integration of the Sub-Bytes function into the
State Register greatly minimize power consumption and area
overhead by lowering the number of clock cycles that are allocated
to inactive circuit parts. This solution provides notable reductions
in area overhead over traditional AES implementations through
careful hardware design decisions and algorithmic optimization.
This work makes a substantial contribution to the development of
effective and safe cryptographic systems designed to meet the
unique requirements of IoT settings, where security is of utmost
importance yet resources are scarce.

Keywords: AES cryptographic algorithm, security, area

efficiency, cryptography, clock gating.

1. Introduction
During the Internet of Things (IoT) era, where billions of

devices are interconnected to facilitate automation, data
collection, and seamless communication, ensuring security
becomes paramount. Because of its widespread use and
robustness, the Advanced Encryption Standard (AES)
cryptographic method is considered a cornerstone for protecting
sensitive data, among other options. However, implementing
[10] AES on resource-constrained IoT devices poses significant
challenges, particularly in terms of area efficiency, where the
objective is to attain maximum performance with the least
amount of gear.

This introduction outlines the significance of area-efficient
nano AES implementations tailored specifically for IoT
devices. Nano AES refers to ultra-compact implementations of
AES suitable for devices with strict area constraints, such as
microcontrollers and sensor nodes. Here, we go over the
significance of these solutions in terms of IoT security and
investigate the main causes for the demand for area efficiency.
1) IoT Security Imperatives

In the IoT, a myriad of devices, ranging from tiny sensors to
interconnected appliances, constantly exchange sensitive data.
[5] Protecting this data's confidentiality and integrity is
essential to avoiding illegal access, alteration, or
eavesdropping. [2] AES, with its strong cryptographic
properties, offers a viable solution for protecting
communications via the Internet of Things. communications.
However, traditional AES implementations may not be feasible
due to the limited computational and memory resources

available on IoT devices.
2) Resource Constraints

IoT devices typically operate under stringent resource
constraints, including limited processing power, memory, and
energy supply. Traditional implementations of AES, optimized
for performance on desktop or server environments, often
require excessive hardware resources that surpass the
capabilities of IoT devices. [3] Therefore, there is a need for
nano AES implementations that create a harmony between
safety and resource utilization, specifically targeting the
constraints inherent in IoT environments.
3) Area-Efficiency Challenges

Achieving area efficiency in nano AES implementations
involves optimizing the cryptographic algorithm's hardware
implementation to minimize the application of silicon area
while maintaining adequate security levels. [4] This entails
exploring techniques such as algorithmic optimizations,
hardware acceleration, and trade-offs between performance and
resource consumption. The difficulty is in designing compact
yet secure implementations that meet the stringent area
constraints imposed by Internet of Things gadgets without
compromising on security.
4) Key Objectives

The principal aim of area-efficient nano AES
implementations for Internet of Things gadgets is to provide
robust cryptographic protection while conserving hardware
resources. [12] This entails designing lightweight
cryptographic cores that consume minimal silicon area,
memory, and power while delivering adequate encryption and
decryption performance. Additionally, these implementations
should be scalable and adaptable to accommodate many
Internet of Things device architectures and application
scenarios.

2. Literature Survey
Secure communication requires the Advanced Encryption

Standard (AES) algorithm, but conventional implementations
may be too resource-intensive for Internet of Things (IoT)
devices with constrained processing and memory. This section
examines several methods for developing effective and
lightweight AES implementations that work in these resource-
constrained settings.

Combined Operations: Merging SubBytes and ShiftRows
stages reduces the number of required operations, streamlining

Area-Efficient AES Design for IoT Devices
G. Shyam Kishore1, Koppula Krishna Murthy2, Polasa Vamshika3, Sai Kiran Shinde4*

1Associate Professor, Department of Electronics and Communication Engineering, CMR College of Engineering & Technology, Hyderabad, India
2,3,4UG Student, Department of Electronics and Communication Engineering, CMR College of Engineering & Technology, Hyderabad, India

Kishore et al. International Journal of Modern Developments in Engineering and Science, VOL. 2, NO. 12, DECEMBER 2023 29

the overall process. [8] Alternative MixColumns: Employing
alternative methods like polynomial multiplication for
MixColumns can decrease hardware complexity compared to
traditional implementations. Efficient Key Expansion: Utilizing
efficient key expansion algorithms like the key schedule helps
minimize the area footprint of the design. Shared Resources:
Sharing resources like adders and multiplexers across different
stages of AES computation reduces the overall hardware
footprint, minimizing the required silicon area. Pipelining and
Time-Multiplexing: Implementing pipeline stages or time-
multiplexing resources allows for parallel processing of
different AES rounds, improving throughput without
significantly increasing area usage. Optimized Data Paths and
Representations: Designing efficient data paths, employing
compact data representations, and implementing efficient data
flow control all contribute to minimizing the overhead
associated with data manipulation during encryption and
decryption. [4] Memory Optimization Techniques: Utilizing
efficient memory architectures for storing intermediate cipher
states, round keys, and S-box tables reduces the memory
footprint, further contributing to a resource-constrained design.
Bit-Slice Implementations: Bit-slice implementations offer
high parallelism and efficient utilization of hardware resources,
especially in Field-Programmable Gate Arrays (FPGAs). [6]
Hardware Accelerators: Designing custom hardware
accelerators or co-processors dedicated solely to AES
computation can be highly area-efficient by focusing only on
the necessary functionalities. Power Reduction Techniques:
Techniques like clock gating, power gating, and voltage scaling
are employed to reduce overall power consumption without
significantly impacting the area footprint. [2] Area-Power
Efficiency Synergy: Optimizing for area efficiency can often
lead to improvements in power efficiency as well, due to
reduced switching activity in the circuit. Approximate
Computing: Approximate computing explores trading off a
small degree of accuracy for significant area savings. However,
the security implications of such an approach need careful
evaluation and may not be suitable for all applications.
Quantum-Inspired Techniques: Drawing inspiration from
quantum computing algorithms, techniques like quantum-
inspired linear algebra or reversible logic might offer new
avenues for developing area-efficient hardware
implementations of AES. [1] High-Level Synthesis (HLS) tools
offer an automated approach by generating hardware
implementations directly from high-level algorithmic
descriptions. These tools can optimize resource utilization by
exploring various architectural options and scheduling
strategies, leading to efficient designs.

By carefully combining these techniques, designers can
create lightweight and secure AES implementations suitable for
deployment in resource-constrained IoT devices. This ensures
secure communication and data protection within the IoT
ecosystem while minimizing resource overhead.

Trade-offs between area efficiency, performance, and
security are crucial considerations in the design of AES
implementations for IoT devices

Area Efficiency vs. Performance:

Trade-off: Increasing area efficiency often involves
simplifying hardware designs or using resource-sharing
techniques, which can lead to reduced performance.

Discussion: Designs optimized for area efficiency may
sacrifice performance in terms of throughput or latency. For
example, resource-sharing techniques or pipeline optimizations
can introduce additional latency, impacting overall
performance. [8] Balancing area efficiency with performance
requires careful consideration of the IoT application and the
desired trade-offs between area footprint and computational
speed.

Area Efficiency vs. Security:
Trade-off: Optimizing for area efficiency may involve using

simplified cryptographic algorithms or reducing the size of
cryptographic keys, which can compromise security.

Discussion: Lightweight cryptography algorithms tailored
for resource-constrained devices often sacrifice some level of
security for improved area efficiency. For example, reducing
the key size or using simplified substitution-permutation
network (SPN) structures can make AES implementations more
vulnerable to certain cryptographic attacks. [9] Designers must
carefully assess the security implications of area optimization
techniques and ensure that the chosen implementation meets the
security requirements of the IoT application.

Performance vs. Security:
Trade-off: Improving performance, such as increasing

throughput or reducing latency, may require sacrificing certain
security features or using less secure cryptographic algorithms.

Discussion: Some performance optimization techniques,
such as parallel processing or algorithmic simplifications, may
inadvertently weaken the security of AES implementations. For
instance, parallel processing of multiple data streams can
introduce timing side-channel vulnerabilities, while algorithmic
simplifications may make the encryption scheme more
susceptible to cryptanalysis. Designers must strike a balance
between performance and security requirements, considering
factors such as acceptable risk levels, threat models, and
potential attack vectors.

Optimizing for Balance:
Trade-off: Achieving an optimal balance between area

efficiency, performance, and security often requires making
trade-offs and compromises in each aspect.

Discussion: Designers must carefully evaluate the
requirements and constraints of the target IoT application to
determine the appropriate trade-offs. For example, applications
with strict area constraints may prioritize area efficiency over
performance, while applications requiring high levels of
security may prioritize security over performance
optimizations. [7] Ultimately, the optimal design depends on
the specific use case, resource constraints, and security
requirements of the IoT deployment.

Dynamic Adaptation:
Trade-off: Implementations that dynamically adapt based on

workload or security requirements may incur additional
overhead or complexity.

Discussion: Dynamic adaptation mechanisms, such as
reconfigurable hardware architectures or runtime security

Kishore et al. International Journal of Modern Developments in Engineering and Science, VOL. 2, NO. 12, DECEMBER 2023 30

monitoring, can help balance area efficiency, performance, and
security dynamically. However, there's a chance that these
processes will increase computing complexity, power
consumption, or area overhead. [12] Designers must carefully
assess the trade-offs associated with dynamic adaptation and
determine whether the benefits outweigh the additional costs in
the context of the IoT application.

In summary, achieving an optimal balance between area
efficiency, performance, and security is a complex challenge in
the design of AES implementations for IoT devices. [3]-[5]
Designers must carefully evaluate trade-offs and make
informed decisions based on the particular limitations and
specifications of the intended use.

3. Existing System

A. Tiny AES
 [2] Tiny AES aims to provide a minimalistic yet efficient

AES implementation suited for devices with low power,
memory, and energy resources. AES operates on blocks of data,
whose key size varies among 128, 192, or 256 bits, and supports
various modes of operation.

Fig. 1. Traditional AES flow

This flowchart represents the AES encryption process with

the ECB mode of operation, where each plaintext block is
encrypted independently with the key. [10] For other modes of
operation, such as CBC or CTR, additional steps such as
initialization vector (IV) generation and chaining would be
incorporated into the flowchart.

4. Proposed System
Explanation of the Proposed 8-Bit Datapath nano -AES

Architecture.
This section discusses the architecture of a novel lightweight

AES implementation designed for resource-constrained devices
(Fig. 2).

Fig. 2. Structure of AES

Key Components:
Key-Register and State-Register: These register banks store

the encryption key, plain text, and intermediate results during
the encryption process.

RCON Block: This block generates round constants used
during the key expansion phase.

Control Unit: This unit orchestrates the entire encryption
process by controlling the data flow and triggering various
operations.

Efficiency Focus:
The design prioritizes minimizing unnecessary operations.

The Mix-Columns and Sub-Bytes functions are combined to
streamline the process.

Fig. 3. State-Register

Structure: The State-Register consists of 16 individual 8-bit

registers, each containing eight flip-flops.
Shift-Rows Integration: This design integrates the Shift-

Rows functionality within the State Register itself, eliminating
the need for a separate block (saving area).

Data Flow: Each register receives data from the previous one
during encryption and vice versa during decryption. The state
register utilizes multiplexers for selecting data inputs.

Control Signals: Control signals manage register activation
and data flow during different operations.

Benefits of Integrated Shift-Rows:
Area Efficiency: Embedding Shift-Rows within the State-

Register reduces hardware footprint compared to dedicated
Shift-Rows blocks used in previous designs (e.g., by Jarvinen
et al. and Zhao et al.).

Reduced Complexity: This approach eliminates the need for

Kishore et al. International Journal of Modern Developments in Engineering and Science, VOL. 2, NO. 12, DECEMBER 2023 31

complex control units required for separate Shift-Rows blocks,
leading to lower power consumption.

Mix-Columns Operation:
Mix-Columns operates on a single column of data at a time.
The State Register facilitates data transfer to and from the

Mix-Columns block for processing.
State-Register Control Signals:
Four control signals (CS0, CS1, CS2, and CS3) manage

register access during different operations.
CS1 and CS2 select the active row of registers. CS0 and CS3

combined activate the second row, while CS1 alone activates
the first row.

State-Register Management:
Managing the State-Register involves:
Data loading and unloading selecting active registers based

on the operation (Shift-Rows, Mix-Columns), controlling data
flow during encryption and decryption, and synchronizing
operations with the control unit, ensuring proper timing for each
step. Overall, the proposed architecture prioritizes area
efficiency and reduces complexity by integrating functionalities
like Shift-Rows within the State-Register. This lightweight
design caters to the resource limitations of devices commonly
used in the Internet of Things (IoT).

This section details the operation of the State-Register, a
crucial component in the proposed nano-AES architecture.
1) Loading the Plain Text

To load the plain text into the State-Register, all 16 internal
registers need to be activated simultaneously. This is achieved
by setting all control signals (CS0, CS1, CS2, CS3) to "1."

The design feeds 8 bits of data in each clock cycle. This data
is stored in the last register (RS15) of the State-Register (refer
to Fig. 3).

Thanks to the shift-register memory structure and internal
connections, new incoming data triggers a shift in the existing
data. The data stored in RS15 moves to RS14, RS14 to RS13,
and so on, ultimately reaching RS0.
2) Executing Shift-Rows

The Shift-Rows operation is cleverly integrated within the
State-Register through internal connections and wiring.

To activate Shift-Rows, only the registers in the second,
third, and fourth columns need to be active. This is achieved by
setting CS0 and CS1 to "0" while setting CS2 and CS3 to "1."
3) Handling First Add-Round-Key and Last Round

These rounds involve feeding the design with new data while
simultaneously storing it in the State-Register, as Mix-Columns
is not performed in these stages.

Similar to loading the plain text, all internal registers need to
be activated (all control signals set to "1") for this operation.
4) Feeding Data and Executing Mix-Columns

During Mix-Columns, data from the first column of the State
Register (RS0 to RS3) is fed one byte at a time for four clock
cycles.

Simultaneously, the data in the registers is shifted to facilitate
storing the Mix-Columns results. All control signals remain set
to "1" during this process.

After four clock cycles, the data is shifted in a way that
prepares the fourth column to store the outcome of the Mix-

Columns operation.
5) Storing Mix-Columns Results

As explained earlier, storing the Mix-Columns results
requires four clock cycles. This data is written only in the last
column of the state register.

To achieve this, only the data in the last column is shifted to
make space for the incoming Mix-Columns result. The data in
other columns remains stationary.

This operation involves deactivating the internal registers in
the first three columns (setting CS3, CS2, and CS1 to "1" and
CS0 to "0") to temporarily cut off connections between the
fourth and third columns.

Table I (mentioned in the original text) is likely to detail the
specific data movement within the State Register for the Add-
Round-Key and first round operations. The value of these
registers would then be repeated for subsequent rounds.

A. Sub-Bytes Optimization
The Sub-Bytes operation is essential for the security of the

AES algorithm, but it also comes at a cost. It consumes valuable
resources like power, chip space (area), and processing time
(latency). This section becomes especially critical when
designing for devices with limited resources. Here, we'll
explore efficient ways to implement Sub-Bytes in such
constrained environments.

There are traditional approaches like Lookup Tables (LUTs)
and Boolean simplification maps. While these are easy to
implement, they require a lot of space on the chip, making them
a poor choice for resource-constrained devices. Another option
is Decode-Switch-Encode (DSE), which offers a better balance
between power consumption and area compared to LUTs.
However, DSE still requires more space than ideal.

The most efficient approach for resource-constrained designs
is called composite field arithmetic. This method breaks down
the complex calculations involved in Sub-Bytes into simpler
operations within smaller subfields. Imagine it as dividing a big
problem into smaller, more manageable ones.

Here's how it works: We know that the inverse of a specific
element in a mathematical field called Galois Field (GF(2^8))
can be calculated more efficiently if we break down GF(2^8)
into smaller, simpler subfields like GF(2^1), GF(2^2), and
GF(2^(2^2)). By doing this, composite field arithmetic
significantly simplifies the calculation of the inverse, which is
a key step in Sub-Bytes.

Choosing the right formulas (irreducible polynomials) is
crucial for this method. Research suggests that decomposing
GF(2^8) into specific subfields leads to the most efficient
results. We can borrow these formulas from existing efficient
Sub-byte designs.

Once we have the subfields defined, we can map elements
from the larger field (GF(2^8)) to their corresponding elements
in the smaller subfields. This allows us to perform the
calculations more efficiently.

A special transformation matrix can be generated to handle
this mapping between the larger field and the composite field.
This transformation is achieved using special functions and
their inverses.

Kishore et al. International Journal of Modern Developments in Engineering and Science, VOL. 2, NO. 12, DECEMBER 2023 32

In conclusion, composite field arithmetic offers a significant
advantage for resource-constrained AES designs. By breaking
down complex calculations and utilizing smaller subfields, it
allows for a more space-efficient implementation of the Sub-
Bytes operation, making it ideal for devices with limited
resources.isomorphic function is,

inverse isomorphic function is,

After calculating the multiplicative inverse and applying the

inverse isomorphic function (δ^-1), an additional step called
Affine Transformation (AT) is applied to achieve the final
result for the Sub-Bytes operation.

f(x): This represents the result obtained after performing the
multiplicative inverse and then applying the inverse isomorphic
function (δ^-1).

φ: This is a constant value denoted as {63} in base-8 notation.
g(x): This represents the final output of the Sub-Bytes block

after applying the Affine Transformation.
To put it another way, the equation shows how the initial

result (f(x)) is further processed using a constant value (φ) and
the Affine Transformation (AT) to arrive at the final Sub-Bytes
output (g(x)).

The Sub-Bytes of f (x) is equal to g(x) and it is obtained by,

To simplify the equation further, a new term called gamma
(γ) is introduced. Gamma represents a mix of the inverse
isomorphic function and the Affine Transformation. To put it
another way, γ is calculated by multiplying the inverse
isomorphic function (δ^-1) with the Affine Transformation
(AT), and then multiplying the result by another constant value
(φ).

By defining gamma (γ), the equation becomes more concise,
highlighting the combined effect of the inverse isomorphic
function and the Affine Transformation on the Sub-Bytes
output in this composite field arithmetic approach.

The layout of the gamma (γ) function is optimized to

minimize the resources it requires. Figure 4 details this
optimized architecture. It leverages a mix of basic logic gates:
12 XOR gates, 3 XNOR gates, and just 1 NOT gate. This
efficient design achieves a significant reduction in chip space
(area) compared to previous implementations. Specifically, it
uses 6.1% less area than one design and a remarkable 19% less
area than another (references for these designs are not
provided). These reductions are estimated according to the
required number of logic gates and assuming a specific chip
manufacturing process. Overall, the optimized gamma design
offers a space-efficient solution for the Sub-Bytes operation in
the nano-AES architecture.

Fig. 4. Combination of inverse isomorphic and AT for sub-byte

optimisation

Kishore et al. International Journal of Modern Developments in Engineering and Science, VOL. 2, NO. 12, DECEMBER 2023 33

Fig. 4 shows the architecture of the proposed Sub-Bytes that
includes the isomorphic function, and “γ ” is the mix of inverse
isomorphic and AT.

5. Results

Fig. 5. Entity diagram for nano-AES

Fig. 6. RTL schematic for nano-AES

Fig. 7. Simulation results

6. Conclusion
In conclusion, our lightweight AES architecture addresses

the crucial need for cryptography on devices with resource
constraints. The nano AES implementation is intended to be
compatible with existing AES standards, ensuring
interoperability with other systems and devices that utilize AES
encryption. This compatibility facilitates seamless integration
into IoT ecosystems and networks. Along with area efficiency,
the implementation may also prioritize energy efficiency,
minimizing power consumption during cryptographic
operations. This aspect is crucial for resource-constrained
devices powered by batteries or energy harvesting mechanisms,
extending their operational lifespan.

References
[1] Amini et al., A focus on secure and power-efficient implementations of

nano-AES for resource-constrained IoT devices (2021).
[2] Chodowiec et al., An FPGA-based design for AES encryption tailored for

IoT applications (2022).
[3] Ghosh et al., Optimizing the AES cryptosystem for energy and area

efficiency with relation to IoT devices (2021).
[4] Zhe et al., A compact and efficient hardware design for implementing

AES on resource-limited IoT devices (2020).
[5] Kaur & Singh, Exploring low-power AES encryption using FPGAs about

IoT applications (2020).
[6] Son et al., Research on achieving compactness and speed in AES for

resource-constrained IoT devices (2019).
[7] Thapliyal & Saxena, Designing an ultra-low power AES crypto-processor

specifically about IoT applications (2018).
[8] Yan et al., A lightweight AES encryption scheme proposed about IoT

applications (2021).
[9] Singh & Sharma, Designing an energy and area-efficient AES S-box

suitable for IoT gadgets (2021).
[10] Khrais & Al-Ali, An area-efficient implementation of an AES encryption

core for IoT gadgets (2020).
[11] Kim & Lee, Energy-efficient design considerations for AES

cryptosystems in IoT devices (2020).
[12] Patel & Patel, Designing lightweight AES encryption for limited

resources IoT devices (2019).
[13] Hu et al., A lightweight AES encryption algorithm design and

implementation for IoT security systems (2018).

	1. Introduction
	1) IoT Security Imperatives
	2) Resource Constraints
	3) Area-Efficiency Challenges
	4) Key Objectives

	2. Literature Survey
	3. Existing System
	A. Tiny AES

	4. Proposed System
	1) Loading the Plain Text
	2) Executing Shift-Rows
	3) Handling First Add-Round-Key and Last Round
	4) Feeding Data and Executing Mix-Columns
	5) Storing Mix-Columns Results
	A. Sub-Bytes Optimization

	5. Results
	6. Conclusion
	References

