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Abstract: This project prioritizes both low power consumption 

and space efficiency while improving AES implementation for 
Internet of Things devices with limited resources. Clock gating 
methods and the integration of the Sub-Bytes function into the 
State Register greatly minimize power consumption and area 
overhead by lowering the number of clock cycles that are allocated 
to inactive circuit parts. This solution provides notable reductions 
in area overhead over traditional AES implementations through 
careful hardware design decisions and algorithmic optimization. 
This work makes a substantial contribution to the development of 
effective and safe cryptographic systems designed to meet the 
unique requirements of IoT settings, where security is of utmost 
importance yet resources are scarce. 

 
Keywords: AES cryptographic algorithm, security, area 

efficiency, cryptography, clock gating. 

1. Introduction 
During the Internet of Things (IoT) era, where billions of 

devices are interconnected to facilitate automation, data 
collection, and seamless communication, ensuring security 
becomes paramount. Because of its widespread use and 
robustness, the Advanced Encryption Standard (AES) 
cryptographic method is considered a cornerstone for protecting 
sensitive data, among other options. However, implementing 
[10] AES on resource-constrained IoT devices poses significant 
challenges, particularly in terms of area efficiency, where the 
objective is to attain maximum performance with the least 
amount of gear. 

This introduction outlines the significance of area-efficient 
nano AES implementations tailored specifically for IoT 
devices. Nano AES refers to ultra-compact implementations of 
AES suitable for devices with strict area constraints, such as 
microcontrollers and sensor nodes.  Here, we go over the 
significance of these solutions in terms of IoT security and 
investigate the main causes for the demand for area efficiency. 
1) IoT Security Imperatives 

In the IoT, a myriad of devices, ranging from tiny sensors to 
interconnected appliances, constantly exchange sensitive data. 
[5] Protecting this data's confidentiality and integrity is 
essential to avoiding illegal access, alteration, or 
eavesdropping. [2] AES, with its strong cryptographic 
properties, offers a viable solution for protecting 
communications via the Internet of Things. communications. 
However, traditional AES implementations may not be feasible 
due to the limited computational and memory resources  

 
available on IoT devices. 
2) Resource Constraints 

IoT devices typically operate under stringent resource 
constraints, including limited processing power, memory, and 
energy supply. Traditional implementations of AES, optimized 
for performance on desktop or server environments, often 
require excessive hardware resources that surpass the 
capabilities of IoT devices. [3] Therefore, there is a need for 
nano AES implementations that create a harmony between 
safety and resource utilization, specifically targeting the 
constraints inherent in IoT environments. 
3) Area-Efficiency Challenges 

Achieving area efficiency in nano AES implementations 
involves optimizing the cryptographic algorithm's hardware 
implementation to minimize the application of silicon area 
while maintaining adequate security levels. [4] This entails 
exploring techniques such as algorithmic optimizations, 
hardware acceleration, and trade-offs between performance and 
resource consumption. The difficulty is in designing compact 
yet secure implementations that meet the stringent area 
constraints imposed by Internet of Things gadgets without 
compromising on security. 
4) Key Objectives 

The principal aim of area-efficient nano AES 
implementations for Internet of Things gadgets is to provide 
robust cryptographic protection while conserving hardware 
resources. [12] This entails designing lightweight 
cryptographic cores that consume minimal silicon area, 
memory, and power while delivering adequate encryption and 
decryption performance. Additionally, these implementations 
should be scalable and adaptable to accommodate many 
Internet of Things device architectures and application 
scenarios. 

2. Literature Survey 
Secure communication requires the Advanced Encryption 

Standard (AES) algorithm, but conventional implementations 
may be too resource-intensive for Internet of Things (IoT) 
devices with constrained processing and memory. This section 
examines several methods for developing effective and 
lightweight AES implementations that work in these resource-
constrained settings. 

Combined Operations: Merging SubBytes and ShiftRows 
stages reduces the number of required operations, streamlining 
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the overall process. [8] Alternative MixColumns: Employing 
alternative methods like polynomial multiplication for 
MixColumns can decrease hardware complexity compared to 
traditional implementations. Efficient Key Expansion: Utilizing 
efficient key expansion algorithms like the key schedule helps 
minimize the area footprint of the design. Shared Resources: 
Sharing resources like adders and multiplexers across different 
stages of AES computation reduces the overall hardware 
footprint, minimizing the required silicon area. Pipelining and 
Time-Multiplexing: Implementing pipeline stages or time-
multiplexing resources allows for parallel processing of 
different AES rounds, improving throughput without 
significantly increasing area usage. Optimized Data Paths and 
Representations: Designing efficient data paths, employing 
compact data representations, and implementing efficient data 
flow control all contribute to minimizing the overhead 
associated with data manipulation during encryption and 
decryption. [4] Memory Optimization Techniques: Utilizing 
efficient memory architectures for storing intermediate cipher 
states, round keys, and S-box tables reduces the memory 
footprint, further contributing to a resource-constrained design. 
Bit-Slice Implementations: Bit-slice implementations offer 
high parallelism and efficient utilization of hardware resources, 
especially in Field-Programmable Gate Arrays (FPGAs). [6] 
Hardware Accelerators: Designing custom hardware 
accelerators or co-processors dedicated solely to AES 
computation can be highly area-efficient by focusing only on 
the necessary functionalities. Power Reduction Techniques: 
Techniques like clock gating, power gating, and voltage scaling 
are employed to reduce overall power consumption without 
significantly impacting the area footprint. [2] Area-Power 
Efficiency Synergy: Optimizing for area efficiency can often 
lead to improvements in power efficiency as well, due to 
reduced switching activity in the circuit. Approximate 
Computing: Approximate computing explores trading off a 
small degree of accuracy for significant area savings. However, 
the security implications of such an approach need careful 
evaluation and may not be suitable for all applications. 
Quantum-Inspired Techniques: Drawing inspiration from 
quantum computing algorithms, techniques like quantum-
inspired linear algebra or reversible logic might offer new 
avenues for developing area-efficient hardware 
implementations of AES. [1] High-Level Synthesis (HLS) tools 
offer an automated approach by generating hardware 
implementations directly from high-level algorithmic 
descriptions. These tools can optimize resource utilization by 
exploring various architectural options and scheduling 
strategies, leading to efficient designs. 

By carefully combining these techniques, designers can 
create lightweight and secure AES implementations suitable for 
deployment in resource-constrained IoT devices. This ensures 
secure communication and data protection within the IoT 
ecosystem while minimizing resource overhead. 

Trade-offs between area efficiency, performance, and 
security are crucial considerations in the design of AES 
implementations for IoT devices  

Area Efficiency vs. Performance: 

Trade-off: Increasing area efficiency often involves 
simplifying hardware designs or using resource-sharing 
techniques, which can lead to reduced performance. 

Discussion: Designs optimized for area efficiency may 
sacrifice performance in terms of throughput or latency. For 
example, resource-sharing techniques or pipeline optimizations 
can introduce additional latency, impacting overall 
performance. [8] Balancing area efficiency with performance 
requires careful consideration of the IoT application and the 
desired trade-offs between area footprint and computational 
speed. 

Area Efficiency vs. Security: 
Trade-off: Optimizing for area efficiency may involve using 

simplified cryptographic algorithms or reducing the size of 
cryptographic keys, which can compromise security. 

Discussion: Lightweight cryptography algorithms tailored 
for resource-constrained devices often sacrifice some level of 
security for improved area efficiency. For example, reducing 
the key size or using simplified substitution-permutation 
network (SPN) structures can make AES implementations more 
vulnerable to certain cryptographic attacks. [9] Designers must 
carefully assess the security implications of area optimization 
techniques and ensure that the chosen implementation meets the 
security requirements of the IoT application. 

Performance vs. Security: 
Trade-off: Improving performance, such as increasing 

throughput or reducing latency, may require sacrificing certain 
security features or using less secure cryptographic algorithms. 

Discussion: Some performance optimization techniques, 
such as parallel processing or algorithmic simplifications, may 
inadvertently weaken the security of AES implementations. For 
instance, parallel processing of multiple data streams can 
introduce timing side-channel vulnerabilities, while algorithmic 
simplifications may make the encryption scheme more 
susceptible to cryptanalysis. Designers must strike a balance 
between performance and security requirements, considering 
factors such as acceptable risk levels, threat models, and 
potential attack vectors. 

Optimizing for Balance: 
Trade-off: Achieving an optimal balance between area 

efficiency, performance, and security often requires making 
trade-offs and compromises in each aspect. 

Discussion: Designers must carefully evaluate the 
requirements and constraints of the target IoT application to 
determine the appropriate trade-offs. For example, applications 
with strict area constraints may prioritize area efficiency over 
performance, while applications requiring high levels of 
security may prioritize security over performance 
optimizations. [7] Ultimately, the optimal design depends on 
the specific use case, resource constraints, and security 
requirements of the IoT deployment. 

Dynamic Adaptation: 
Trade-off: Implementations that dynamically adapt based on 

workload or security requirements may incur additional 
overhead or complexity. 

Discussion: Dynamic adaptation mechanisms, such as 
reconfigurable hardware architectures or runtime security 
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monitoring, can help balance area efficiency, performance, and 
security dynamically. However, there's a chance that these 
processes will increase computing complexity, power 
consumption, or area overhead. [12] Designers must carefully 
assess the trade-offs associated with dynamic adaptation and 
determine whether the benefits outweigh the additional costs in 
the context of the IoT application. 

In summary, achieving an optimal balance between area 
efficiency, performance, and security is a complex challenge in 
the design of AES implementations for IoT devices. [3]-[5] 
Designers must carefully evaluate trade-offs and make 
informed decisions based on the particular limitations and 
specifications of the intended use. 

3. Existing System 

A. Tiny AES 
 [2] Tiny AES aims to provide a minimalistic yet efficient 

AES implementation suited for devices with low power, 
memory, and energy resources. AES operates on blocks of data, 
whose key size varies among 128, 192, or 256 bits, and supports 
various modes of operation. 

 

 
Fig. 1.  Traditional AES flow 

 
This flowchart represents the AES encryption process with 

the ECB mode of operation, where each plaintext block is 
encrypted independently with the key. [10] For other modes of 
operation, such as CBC or CTR, additional steps such as 
initialization vector (IV) generation and chaining would be 
incorporated into the flowchart. 

4. Proposed System 
Explanation of the Proposed 8-Bit Datapath nano -AES 

Architecture. 
This section discusses the architecture of a novel lightweight 

AES implementation designed for resource-constrained devices 
(Fig. 2). 

 
Fig. 2.  Structure of AES 

 
Key Components: 
Key-Register and State-Register: These register banks store 

the encryption key, plain text, and intermediate results during 
the encryption process. 

RCON Block: This block generates round constants used 
during the key expansion phase. 

Control Unit: This unit orchestrates the entire encryption 
process by controlling the data flow and triggering various 
operations. 

Efficiency Focus: 
The design prioritizes minimizing unnecessary operations. 

The Mix-Columns and Sub-Bytes functions are combined to 
streamline the process. 

 

 
Fig. 3.  State-Register 

 
Structure: The State-Register consists of 16 individual 8-bit 

registers, each containing eight flip-flops. 
Shift-Rows Integration: This design integrates the Shift-

Rows functionality within the State Register itself, eliminating 
the need for a separate block (saving area). 

Data Flow: Each register receives data from the previous one 
during encryption and vice versa during decryption. The state 
register utilizes multiplexers for selecting data inputs. 

Control Signals: Control signals manage register activation 
and data flow during different operations. 

Benefits of Integrated Shift-Rows: 
Area Efficiency: Embedding Shift-Rows within the State-

Register reduces hardware footprint compared to dedicated 
Shift-Rows blocks used in previous designs (e.g., by Jarvinen 
et al. and Zhao et al.). 

Reduced Complexity: This approach eliminates the need for 
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complex control units required for separate Shift-Rows blocks, 
leading to lower power consumption. 

Mix-Columns Operation: 
Mix-Columns operates on a single column of data at a time. 
The State Register facilitates data transfer to and from the 

Mix-Columns block for processing. 
State-Register Control Signals: 
Four control signals (CS0, CS1, CS2, and CS3) manage 

register access during different operations. 
CS1 and CS2 select the active row of registers. CS0 and CS3 

combined activate the second row, while CS1 alone activates 
the first row. 

State-Register Management: 
Managing the State-Register involves: 
Data loading and unloading selecting active registers based 

on the operation (Shift-Rows, Mix-Columns), controlling data 
flow during encryption and decryption, and synchronizing 
operations with the control unit, ensuring proper timing for each 
step.  Overall, the proposed architecture prioritizes area 
efficiency and reduces complexity by integrating functionalities 
like Shift-Rows within the State-Register. This lightweight 
design caters to the resource limitations of devices commonly 
used in the Internet of Things (IoT). 

This section details the operation of the State-Register, a 
crucial component in the proposed nano-AES architecture. 
1) Loading the Plain Text 

To load the plain text into the State-Register, all 16 internal 
registers need to be activated simultaneously. This is achieved 
by setting all control signals (CS0, CS1, CS2, CS3) to "1." 

The design feeds 8 bits of data in each clock cycle. This data 
is stored in the last register (RS15) of the State-Register (refer 
to Fig. 3). 

Thanks to the shift-register memory structure and internal 
connections, new incoming data triggers a shift in the existing 
data. The data stored in RS15 moves to RS14, RS14 to RS13, 
and so on, ultimately reaching RS0. 
2) Executing Shift-Rows 

The Shift-Rows operation is cleverly integrated within the 
State-Register through internal connections and wiring. 

To activate Shift-Rows, only the registers in the second, 
third, and fourth columns need to be active. This is achieved by 
setting CS0 and CS1 to "0" while setting CS2 and CS3 to "1." 
3) Handling First Add-Round-Key and Last Round 

These rounds involve feeding the design with new data while 
simultaneously storing it in the State-Register, as Mix-Columns 
is not performed in these stages. 

Similar to loading the plain text, all internal registers need to 
be activated (all control signals set to "1") for this operation. 
4) Feeding Data and Executing Mix-Columns 

During Mix-Columns, data from the first column of the State 
Register (RS0 to RS3) is fed one byte at a time for four clock 
cycles. 

Simultaneously, the data in the registers is shifted to facilitate 
storing the Mix-Columns results. All control signals remain set 
to "1" during this process. 

After four clock cycles, the data is shifted in a way that 
prepares the fourth column to store the outcome of the Mix-

Columns operation. 
5) Storing Mix-Columns Results 

As explained earlier, storing the Mix-Columns results 
requires four clock cycles. This data is written only in the last 
column of the state register. 

To achieve this, only the data in the last column is shifted to 
make space for the incoming Mix-Columns result. The data in 
other columns remains stationary. 

This operation involves deactivating the internal registers in 
the first three columns (setting CS3, CS2, and CS1 to "1" and 
CS0 to "0") to temporarily cut off connections between the 
fourth and third columns. 

Table I (mentioned in the original text) is likely to detail the 
specific data movement within the State Register for the Add-
Round-Key and first round operations. The value of these 
registers would then be repeated for subsequent rounds. 

A. Sub-Bytes Optimization 
The Sub-Bytes operation is essential for the security of the 

AES algorithm, but it also comes at a cost. It consumes valuable 
resources like power, chip space (area), and processing time 
(latency). This section becomes especially critical when 
designing for devices with limited resources. Here, we'll 
explore efficient ways to implement Sub-Bytes in such 
constrained environments. 

There are traditional approaches like Lookup Tables (LUTs) 
and Boolean simplification maps. While these are easy to 
implement, they require a lot of space on the chip, making them 
a poor choice for resource-constrained devices. Another option 
is Decode-Switch-Encode (DSE), which offers a better balance 
between power consumption and area compared to LUTs. 
However, DSE still requires more space than ideal. 

The most efficient approach for resource-constrained designs 
is called composite field arithmetic. This method breaks down 
the complex calculations involved in Sub-Bytes into simpler 
operations within smaller subfields. Imagine it as dividing a big 
problem into smaller, more manageable ones. 

Here's how it works: We know that the inverse of a specific 
element in a mathematical field called Galois Field (GF(2^8)) 
can be calculated more efficiently if we break down GF(2^8) 
into smaller, simpler subfields like GF(2^1), GF(2^2), and 
GF(2^(2^2)). By doing this, composite field arithmetic 
significantly simplifies the calculation of the inverse, which is 
a key step in Sub-Bytes. 

Choosing the right formulas (irreducible polynomials) is 
crucial for this method. Research suggests that decomposing 
GF(2^8) into specific subfields leads to the most efficient 
results. We can borrow these formulas from existing efficient 
Sub-byte designs. 

Once we have the subfields defined, we can map elements 
from the larger field (GF(2^8)) to their corresponding elements 
in the smaller subfields. This allows us to perform the 
calculations more efficiently. 

A special transformation matrix can be generated to handle 
this mapping between the larger field and the composite field. 
This transformation is achieved using special functions and 
their inverses. 
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In conclusion, composite field arithmetic offers a significant 
advantage for resource-constrained AES designs. By breaking 
down complex calculations and utilizing smaller subfields, it 
allows for a more space-efficient implementation of the Sub-
Bytes operation, making it ideal for devices with limited 
resources.isomorphic function is, 

 

 
  
inverse isomorphic function is, 
 

 
  
After calculating the multiplicative inverse and applying the 

inverse isomorphic function (δ^-1), an additional step called 
Affine Transformation (AT) is applied to achieve the final 
result for the Sub-Bytes operation. 

f(x): This represents the result obtained after performing the 
multiplicative inverse and then applying the inverse isomorphic 
function (δ^-1). 

φ: This is a constant value denoted as {63} in base-8 notation. 
g(x): This represents the final output of the Sub-Bytes block 

after applying the Affine Transformation. 
To put it another way, the equation shows how the initial 

result (f(x)) is further processed using a constant value (φ) and 
the Affine Transformation (AT) to arrive at the final Sub-Bytes 
output (g(x)). 

 

 
 
The Sub-Bytes of f (x) is equal to g(x) and it is obtained by, 
 

 
  

To simplify the equation further, a new term called gamma 
(γ) is introduced. Gamma represents a mix of the inverse 
isomorphic function and the Affine Transformation. To put it 
another way, γ is calculated by multiplying the inverse 
isomorphic function (δ^-1) with the Affine Transformation 
(AT), and then multiplying the result by another constant value 
(φ). 

By defining gamma (γ), the equation becomes more concise, 
highlighting the combined effect of the inverse isomorphic 
function and the Affine Transformation on the Sub-Bytes 
output in this composite field arithmetic approach. 

 

 
  
The layout of the gamma (γ) function is optimized to 

minimize the resources it requires. Figure 4 details this 
optimized architecture. It leverages a mix of basic logic gates: 
12 XOR gates, 3 XNOR gates, and just 1 NOT gate. This 
efficient design achieves a significant reduction in chip space 
(area) compared to previous implementations. Specifically, it 
uses 6.1% less area than one design and a remarkable 19% less 
area than another (references for these designs are not 
provided). These reductions are estimated according to the 
required number of logic gates and assuming a specific chip 
manufacturing process. Overall, the optimized gamma design 
offers a space-efficient solution for the Sub-Bytes operation in 
the nano-AES architecture. 

 

 
Fig. 4.  Combination of inverse isomorphic and AT for sub-byte 

optimisation 
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Fig. 4 shows the architecture of the proposed Sub-Bytes that 
includes the isomorphic function, and “γ ” is the mix of inverse 
isomorphic and AT.        

5. Results 

 
Fig. 5.  Entity diagram for nano-AES 

 

 
Fig. 6.  RTL schematic for nano-AES 

  

 
Fig. 7.  Simulation results 

6. Conclusion 
In conclusion, our lightweight AES architecture addresses 

the crucial need for cryptography on devices with resource 
constraints. The nano AES implementation is intended to be 
compatible with existing AES standards, ensuring 
interoperability with other systems and devices that utilize AES 
encryption. This compatibility facilitates seamless integration 
into IoT ecosystems and networks. Along with area efficiency, 
the implementation may also prioritize energy efficiency, 
minimizing power consumption during cryptographic 
operations. This aspect is crucial for resource-constrained 
devices powered by batteries or energy harvesting mechanisms, 
extending their operational lifespan. 
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