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Abstract: This study employs the Boundary Element Method 

(BEM) to analyze the impact of bulkhead number and plating 
thickness on hydrodynamic pressure distribution across a vessel's 
hull. The objective is to quantify and visualize the effects of 
structural variations on pressure dynamics. BEM simulations 
revealed that vessels with 20 bulkheads and 25mm plating exhibit 
localized pressure concentrations reaching 180 N/mm², indicating 
high rigidity. Conversely, vessels with 10 bulkheads and 20mm 
plating show a more uniform distribution with critical pressures 
around 160 N/mm², suggesting increased flexibility. 
Configurations with 5 bulkheads and 25mm plating also displayed 
pressures near 180 N/mm², but with a more dispersed pattern. The 
BEM analysis showcased the compartmentalization of pressure, 
with increased bulkheads creating distinct pressure zones. These 
findings highlight a critical trade-off between rigidity and 
flexibility. Vessels with higher bulkhead counts and thicker plating 
sustain greater localized pressures, while those with fewer 
bulkheads distribute pressure more evenly. The BEM effectively 
mapped pressure gradients, providing crucial insights for 
structural design and cargo management, ultimately enhancing 
vessel safety. 

 
Keywords: Boundary Element Method (BEM), Hydrodynamic 

Pressure, Vessel Hull, Bulkhead Number, Bulkhead Plate 
Thickness, Structural Rigidity. 

1. Introduction 
Containerships play a pivotal role in global trade, serving as 

essential vehicles for the transportation of goods across vast 
oceans. The structural integrity and hydrodynamic performance 
of these vessels are critical to ensuring their operational safety 
and efficiency. One of the key structural features of a 
containership is its system of bulkheads, which are transverse 
or longitudinal walls dividing the ship into compartments. 
Bulkheads provide additional rigidity, limit the spread of 
damage in case of flooding, and contribute to the vessel’s 
overall structural resilience [1]. However, the design and 
configuration of bulkheads—particularly their number and 
thickness—can significantly influence the hydrodynamic 
pressure distribution experienced by the ship’s hull during 
operation [2]. 

Hydrodynamic pressure, resulting from the interaction of the 
vessel with surrounding water and waves, is a critical parameter  

 
in ship design. Excessive or uneven pressure can lead to 
structural fatigue, excessive deformation, and, in extreme cases, 
catastrophic failure [3]. Computational techniques such as the 
Boundary Element Method (BEM) offer a robust and efficient 
approach to analyzing the hydrodynamic response of 
containerships under various conditions. The BEM enables 
precise modeling of the fluid-structure interaction, providing 
insights into how different design parameters impact 
hydrodynamic pressures and subsequent structural stresses [4]. 

While previous studies have investigated factors such as hull 
form, wave frequency, and vessel speed on hydrodynamic 
response, the specific role of bulkhead design parameters 
remains relatively underexplored. Bulkhead configuration not 
only affects the vessel's structural rigidity but also influences its 
dynamic response in waves [5]. Variations in the number of 
bulkheads and their thickness alter the distribution of stiffness 
along the hull, which in turn impacts the interaction between 
the vessel and the surrounding fluid. 

This study investigates the effect of bulkhead number and 
thickness on the hydrodynamic pressure distribution in 
containerships using the Boundary Element Method. The 
primary objective is to establish a detailed understanding of 
how these structural parameters influence hydrodynamic 
performance, contributing to more optimized vessel designs. 
The research focuses on analyzing the hydrodynamic pressure 
distribution for varying bulkhead configurations, with 
particular attention to its implications for safety, structural 
efficiency, and economic performance of containerships [6]. By 
bridging the gap between structural design and hydrodynamic 
analysis, this work aims to provide valuable insights into the 
interplay between bulkhead design and hydrodynamic forces, 
offering a foundation for future design improvements and 
enhancing the reliability of containerships in challenging 
maritime environments. 

2. Literature Review 
The efficient and safe operation of containerships, vital for 

global trade, depends significantly on a deep understanding of 
their structural behavior under various loading conditions. 
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Hydrodynamic pressure exerted on internal bulkheads, 
particularly during wave-induced motions and sloshing, is a 
critical factor influencing structural integrity [1]. This pressure 
can induce substantial stresses, potentially leading to structural 
failure if not adequately addressed. This review explores the 
current knowledge regarding the effect of bulkhead number and 
thickness on hydrodynamic pressure in containerships, 
highlighting key research and identifying areas for further 
study. 

Early investigations into hydrodynamic pressure in ship 
structures primarily utilized simplified analytical models and 
scaled model experiments [7]. These provided valuable insights 
into general pressure distribution behavior under static and 
dynamic loads. However, the complexity of containership hull 
forms and the non-linear nature of wave-induced phenomena 
often limited the accuracy of these simplified methods. With 
increasing computational power, numerical methods, especially 
potential flow and Computational Fluid Dynamics (CFD), have 
become increasingly prevalent for analyzing hydrodynamic 
pressures [8]. 

The number of bulkheads within a containership 
significantly affects the overall structural response. More 
bulkheads can enhance longitudinal strength and stiffness, 
reducing hull girder bending moments and deflections. 
However, each bulkhead also introduces structural 
discontinuities, which can act as stress concentration points 
under hydrodynamic loading. Furthermore, bulkhead spacing 
and arrangement influence internal tank volumes and free 
surface areas, affecting sloshing pressure magnitude and 
distribution. Research has shown that optimizing bulkhead 
placement is crucial to minimize hydrodynamic loads while 
maintaining structural integrity and cargo capacity [9]. 

Bulkhead thickness is another critical parameter influencing 
structural resistance to hydrodynamic pressure. Thicker 
bulkheads offer greater strength and stiffness, reducing the 
likelihood of yielding or buckling under pressure loads. 
However, increasing thickness adds weight, potentially 
reducing cargo capacity and increasing fuel consumption. 
Therefore, determining optimal thickness involves a trade-off 
between structural strength and operational efficiency. Studies 
have investigated the relationship between thickness and 
hydrodynamic pressure, considering various loading scenarios, 
including wave-induced motions, sloshing, and slamming [11]; 
[12]. 

Accurate prediction of hydrodynamic pressure on bulkheads 
requires sophisticated numerical techniques. Potential flow 
methods, while computationally efficient, often struggle to 
capture complex free surface effects and viscous phenomena 
associated with wave breaking and sloshing. CFD methods, 
conversely, offer higher fidelity by solving the Navier-Stokes 
equations but are computationally more demanding. Recent 
research has focused on developing and validating CFD models 
for simulating hydrodynamic pressure on bulkheads, 
considering factors like wave characteristics, ship speed, and 
tank filling levels. 

Sloshing, the violent motion of liquid cargo within tanks, is 
a significant source of hydrodynamic pressure [9]. Sloshing 

pressure magnitude depends on several factors, including tank 
filling level, liquid properties, and ship motion characteristics. 
Resonance, where the ship's motion frequency coincides with 
the liquid's natural frequency, can amplify sloshing pressures 
significantly. Researchers have investigated the effects of 
bulkhead number and thickness on sloshing pressures, 
exploring different tank configurations and filling levels to 
identify critical scenarios. 

Wave-induced motions also contribute significantly to 
hydrodynamic pressure. As the ship interacts with waves, it 
undergoes complex motions, including roll, pitch, and heave, 
inducing dynamic pressures on bulkheads. The magnitude and 
distribution of these pressures depend on wave characteristics, 
ship hull form, and bulkhead location and orientation. Studies 
have examined the relationship between wave-induced motions 
and hydrodynamic pressure, considering various wave 
headings and frequencies [10]. 

Furthermore, the interaction between sloshing and wave-
induced motions can lead to complex hydrodynamic pressure 
patterns. The combined effects can amplify pressure loads, 
particularly in partially filled tanks. Investigating this 
interaction requires advanced numerical models that can 
accurately capture both sloshing and wave-induced motion 
effects. Recent research has also explored advanced materials, 
like high-strength steel or composites, for bulkhead 
construction. These materials offer the potential to reduce 
bulkhead weight while maintaining or enhancing structural 
strength. Studies have investigated the performance of 
bulkheads made of different materials under hydrodynamic 
pressure, considering factors such as strength, stiffness, and 
fatigue resistance [13]. 

Despite progress in understanding the effect of bulkhead 
number and thickness on hydrodynamic pressure, several areas 
need further investigation. More research is needed to develop 
efficient and accurate numerical methods for simulating 
complex hydrodynamic phenomena, particularly sloshing and 
its interaction with wave-induced motions. Further studies are 
also needed to optimize bulkhead design, considering both 
structural strength and operational efficiency. Additionally, 
research on the use of advanced materials for bulkhead 
construction is warranted to explore their potential for 
enhancing ship performance and safety. 

3. Methodology 
Where 𝜑𝜑 is the complex amplitude of the potential ∅, and 

they both satisfy the Laplace Equation (1). 
 
∇2∅ = 0 𝑎𝑎𝑎𝑎𝑎𝑎 ∇2𝜑𝜑 = 0                 (1) 
 
Our purpose is to solve the frequency domain potential 

function 𝜑𝜑. Firstly, the total potential 𝜑𝜑 (Equation (2) is 
considered as the sum of three components. Incoming wave, 
scattered wave and radiated wave; and all three potentials 
satisfy the Laplace condition according to Equation (3) [11] and 
[12]. 
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𝜑𝜑 = 𝜑𝜑𝑜𝑜 + 𝜑𝜑𝑠𝑠 + 𝜑𝜑𝑅𝑅                (2) 
 
∇2𝜑𝜑𝑜𝑜 = ∇2𝜑𝜑𝑠𝑠 = ∇2𝜑𝜑𝑅𝑅 = 0            (3) 
 
Where, 𝜑𝜑𝑜𝑜 is the potential of the incoming wave, 𝜑𝜑𝑠𝑠 is the 

potential of the scattered wave due to the existence of the 
marine structure, 𝜑𝜑𝑅𝑅 is the potential of the radiated wave. The 
fluid domain of interest is enclosed by the body surface 𝑆𝑆𝑏𝑏, the 
free surface, 𝑆𝑆𝑓𝑓 the seabed 𝑆𝑆𝑧𝑧 and the control surface 𝑆𝑆𝑐𝑐 as 
shown in Figure 1. 

 

 
Fig. 1.  BEM Fluid domain of interest 

 
Free Surface 𝑆𝑆𝑓𝑓 linearized free surface boundary conditions 

represented as Equations (4) to (6) for incident, scattered and 
radiation potentials respectively; 

 
𝜕𝜕𝜑𝜑𝑜𝑜
𝜕𝜕𝑧𝑧

= 𝐾𝐾𝜑𝜑𝑜𝑜                    (4) 
 
𝜕𝜕𝜑𝜑𝑠𝑠
𝜕𝜕𝑧𝑧

= 𝐾𝐾𝜑𝜑𝑠𝑠 𝑤𝑤ℎ𝑒𝑒𝑎𝑎 𝑧𝑧 = 0               (5) 
 
𝜕𝜕𝜑𝜑𝑅𝑅
𝜕𝜕𝑧𝑧

= 𝐾𝐾𝜑𝜑𝑅𝑅                   (6)  
 
Linearized free surface boundary condition according to 

Equations (7) or (8). 
 
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑡𝑡2

+ 𝑔𝑔 𝜕𝜕𝜑𝜑
𝜕𝜕𝑧𝑧

= 0                  (7) 
 
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑡𝑡2

= −𝜔𝜔2𝜑𝜑                   (8) 
 
Where 𝐾𝐾 = 𝜔𝜔2

𝑔𝑔
 

 
The Seabed 𝑆𝑆𝑧𝑧: Seabed boundary Conditions are captured as 

Equations (9), (10) and (11) for incident, scattered and radiation 
potentials respectively. 

 

𝜕𝜕𝜑𝜑𝑜𝑜
𝜕𝜕𝑧𝑧

= 0                     (9) 
 
𝜕𝜕𝜑𝜑𝑠𝑠
𝜕𝜕𝑧𝑧

= 0 𝑤𝑤ℎ𝑒𝑒𝑎𝑎 𝑧𝑧 = −ℎ             (10) 
 
𝜕𝜕𝜑𝜑𝑅𝑅
𝜕𝜕𝑧𝑧

= 0                    (11) 
 
Based on the free surface seabed conditions, the velocity 

potential for incoming wave can be solved using Equations (12) 
for for deep water when ℎ > 𝜆𝜆

2
, 

 
𝜑𝜑𝑜𝑜 = 𝑖𝑖𝑔𝑔𝑖𝑖

𝜔𝜔
𝑒𝑒𝑘𝑘𝑧𝑧−𝑖𝑖𝑘𝑘𝑖𝑖 cos𝛽𝛽−𝑖𝑖𝑘𝑘𝑖𝑖 sin𝛽𝛽            (12) 

 
Within the fluid domain, we suppose there are two velocity 

potential functions which satisfy the Laplace condition of 
Equation (1). 

The target potential function 𝜑𝜑, known as potential function 
∅𝑜𝑜 for instance, the potential for the green function or the 
Rankine source and suppose both functions satisfy the Laplace 
Equation (1) that is 

Using the gauss divergence theorem, we have the enclosed 
volume v as Equation (13). 

 
∯ �𝜑𝜑 𝜕𝜕∅𝑜𝑜

𝜕𝜕𝜕𝜕
− ∅𝑜𝑜

𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕
� 𝑎𝑎𝑑𝑑 = ∭ ∇(𝜑𝜑∇∅𝑜𝑜 −𝑣𝑣𝑆𝑆𝑐𝑐+𝑆𝑆𝑏𝑏+𝑆𝑆𝑓𝑓+𝑆𝑆𝑧𝑧

∅𝑜𝑜∇𝜑𝜑)𝑎𝑎𝑑𝑑                     (13) 
 
Where 𝑑𝑑 = 𝑆𝑆𝑐𝑐 + 𝑆𝑆𝑏𝑏 + 𝑆𝑆𝑓𝑓 + 𝑆𝑆𝑧𝑧 
 
So, if we simplify the left hand side of Equation (13) and 

Equate it to zero, we have Equation (14) and (15). 
 
∭ ∇(𝜑𝜑∇∅𝑜𝑜 − ∅𝑜𝑜∇𝜑𝜑)𝑎𝑎𝑑𝑑𝑣𝑣 = ∭ (∇.𝜑𝜑.∇.∅𝑜𝑜 + 𝜑𝜑∇2∅𝑜𝑜 −𝑣𝑣

∇.∅𝑜𝑜.∇.𝜑𝜑 − ∅𝑜𝑜∇2𝜑𝜑)𝑎𝑎𝑑𝑑  (14) 
∭ ∇(𝜑𝜑∇∅𝑜𝑜 − ∅𝑜𝑜∇𝜑𝜑)𝑎𝑎𝑑𝑑𝑣𝑣 = ∭ (𝜑𝜑∇2∅𝑜𝑜 − ∅𝑜𝑜∇2𝜑𝜑)𝑎𝑎𝑑𝑑𝑣𝑣 = 0   

                       (15) 
 
So, we can obtain the Green’s theorem as Equation (16) by 

replacing or substituting the ∇2∅𝑜𝑜 term with 𝜕𝜕∅𝑜𝑜
𝜕𝜕𝜕𝜕

 and ∇2𝜑𝜑 with 
𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

 respectively. 
 
∯ �𝜑𝜑 𝜕𝜕∅𝑜𝑜

𝜕𝜕𝜕𝜕
− ∅𝑜𝑜

𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕
� 𝑎𝑎𝑑𝑑 = 0𝑆𝑆𝑐𝑐+𝑆𝑆𝑏𝑏+𝑆𝑆𝑓𝑓+𝑆𝑆𝑧𝑧

         (16)  

 
For marine structures, the flow field is normally bounded 

with the free surface, 𝑆𝑆𝑓𝑓 and seabed boundary, 𝑆𝑆𝑧𝑧, together with 
the control surface 𝑆𝑆𝑐𝑐 and the body surface 𝑆𝑆𝑏𝑏: 𝑆𝑆𝑐𝑐 + 𝑆𝑆𝑏𝑏 + 𝑆𝑆𝑓𝑓 +
𝑆𝑆𝑧𝑧 = 𝑑𝑑 , thus for simplifying the problem, the green function 
must be carefully chosen as that in WAMIT (Wave Analysis 
MIT), as following the analysis in WAMIT, the special green 
function, G, can be chosen in deep water as Equation (17). 

 

∅𝑜𝑜 = 𝐺𝐺��⃗�𝑋,𝑋𝑋𝑜𝑜����⃗ � = 1
𝑟𝑟

+ 1
𝑟𝑟! + 2𝑘𝑘

𝜋𝜋 ∫
𝑒𝑒𝑘𝑘(𝑧𝑧+𝑧𝑧𝑜𝑜)

𝑘𝑘−𝐾𝐾
∞
0 𝐽𝐽𝑜𝑜(𝑘𝑘𝑘𝑘)𝑎𝑎𝑘𝑘    (17) 
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Where, 
 𝑘𝑘 = 𝜔𝜔2

𝑔𝑔
 

 
 𝑟𝑟 = �(𝑥𝑥 − 𝑥𝑥𝑜𝑜)2 + (𝑦𝑦 − 𝑦𝑦𝑜𝑜)2 + (𝑧𝑧 − 𝑧𝑧𝑜𝑜)2 
 
 r’=�(𝑥𝑥 − 𝑥𝑥0)2 + (𝑦𝑦 − 𝑦𝑦0)2(𝑧𝑧 + 𝑧𝑧0)2 
 
 𝑘𝑘 = �(𝑥𝑥 − 𝑥𝑥𝑜𝑜)2 + (𝑦𝑦 − 𝑦𝑦𝑜𝑜)2 
 
All these potentials and the Green’s function on the body 

surface 𝑑𝑑𝑏𝑏, this is the equation we can use for solving the 
radiation potential 𝜑𝜑𝑗𝑗. Similar to the numerical scheme for the 
scattering potential. We can assume the radiation potential 𝜑𝜑𝑗𝑗 
and the normal vector component 𝜑𝜑𝑗𝑗 would be constants on 
each small panel, as such the discrete boundary integral 
equation for the radiation potential is given as, 

 
𝜑𝜑𝐷𝐷 = 𝜑𝜑𝑠𝑠 + 𝜑𝜑𝑜𝑜                  (18) 
 
𝜑𝜑𝐷𝐷 is the diffracted velocity potential 
 
So, after applying the Green’s function and the respective 

boundary integral, Equation (18) for the diffracted velocity 
potentials will become Equation (19). 

 
𝜑𝜑𝐷𝐷 = − 1

2𝜋𝜋∬ �𝜑𝜑𝐷𝐷
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐺𝐺 𝜕𝜕𝜑𝜑𝐷𝐷

𝜕𝜕𝜕𝜕
�𝑆𝑆𝑐𝑐
𝑎𝑎𝑑𝑑 − 1

2𝜋𝜋∬ �𝜑𝜑𝐷𝐷
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
−𝑆𝑆𝑏𝑏

𝐺𝐺 𝜕𝜕𝜑𝜑𝐷𝐷
𝜕𝜕𝜕𝜕
� 𝑎𝑎𝑑𝑑                     (19)  

 
Equation (19) is very important as will try to solve the 

diffracted potentials 𝜑𝜑𝐷𝐷 
 
The body Boundary Condition on S_b, is given by the 

expression Equation (20) 
 
𝜕𝜕𝜑𝜑𝐷𝐷
𝜕𝜕𝜕𝜕

= 0 𝑜𝑜𝑟𝑟 𝜕𝜕𝜑𝜑𝑜𝑜
𝜕𝜕𝜕𝜕

= −𝜕𝜕𝜑𝜑𝑠𝑠
𝜕𝜕𝜕𝜕

  (20) 
 
The boundary integral, Equation (19) can be expressed for 

the integration on control surface 𝑆𝑆𝑐𝑐, it can be further separated 
to two terms as shown in Equation (21) based on the potential 
function. 

 
− 1

2𝜋𝜋∬ �𝜑𝜑𝐷𝐷
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐺𝐺 𝜕𝜕𝜑𝜑𝐷𝐷

𝜕𝜕𝜕𝜕
�𝑆𝑆𝑐𝑐
𝑎𝑎𝑑𝑑 = − 1

2𝜋𝜋∬ �𝜑𝜑𝑜𝑜
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
−𝑆𝑆𝑐𝑐

𝐺𝐺 𝜕𝜕𝜑𝜑𝑜𝑜
𝜕𝜕𝜕𝜕
� 𝑎𝑎𝑑𝑑 − 1

2𝜋𝜋∬ �𝜑𝜑𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐺𝐺 𝜕𝜕𝜑𝜑𝑠𝑠

𝜕𝜕𝜕𝜕
�𝑆𝑆𝑐𝑐
𝑎𝑎𝑑𝑑          (21)  

 
But 𝜑𝜑𝑜𝑜 on the control surface, 𝑆𝑆𝑐𝑐 and will can consider the 

fluid volume 𝑉𝑉𝑜𝑜 as this, which is enclosed by the control surface  
𝑆𝑆𝑐𝑐 the free surface 𝑆𝑆𝑓𝑓 and the seabed 𝑆𝑆𝑧𝑧. The left-hand side term 
of Equation (21) is equal to the incident integral term as 
expressed in Equation (22). 

 
− 1

2𝜋𝜋∬ �𝜑𝜑𝑜𝑜
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐺𝐺 𝜕𝜕𝜑𝜑𝑜𝑜

𝜕𝜕𝜕𝜕
�𝑆𝑆𝑐𝑐
𝑎𝑎𝑑𝑑 = 𝜑𝜑𝑜𝑜          (22) 

This volume is similar to the precious fluid volume, but 
without the marine structure, therefore based on the Green’s 
theorem and the de-singularization method on the control 
surface boundary, we can have the boundary integral equation 
as Equation (22), however, we might be more interested in the 
potential in the fluid domain, 𝑉𝑉𝑜𝑜 enclosed by the control surface, 
𝑆𝑆𝑐𝑐 , and we have Equation (23). 

 
− 1

4𝜋𝜋∬ �𝜑𝜑𝑜𝑜
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐺𝐺 𝜕𝜕𝜑𝜑𝑜𝑜

𝜕𝜕𝜕𝜕
�𝑆𝑆𝑐𝑐
𝑎𝑎𝑑𝑑 = 𝜑𝜑𝑜𝑜          (23)  

 
Here 𝜑𝜑𝑜𝑜 is in the fluid domain, the reason for this is that is 

our application, our focus would be on the body surface 𝑆𝑆𝑏𝑏, 
which in this case would be in the fluid domain, thus we can 
imagine on the body surface 𝑆𝑆𝑏𝑏, which is actually in the fluid 
domain, 𝑉𝑉𝑜𝑜, so we could have the expression as Equation (24). 

 
− 1

2𝜋𝜋∬ �𝜑𝜑𝑜𝑜
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐺𝐺 𝜕𝜕𝜑𝜑𝑜𝑜

𝜕𝜕𝜕𝜕
�𝑆𝑆𝑐𝑐
𝑎𝑎𝑑𝑑 = 2𝜑𝜑𝑜𝑜          (24) 

 
The 𝜑𝜑𝑜𝑜 in Equation (24) is the potential function on the body 

surface and based on the Far Field Condition, given in Equation 
(25) 

 
lim
𝑅𝑅→∞

�√𝑘𝑘 �𝑖𝑖 𝜕𝜕𝜑𝜑𝑠𝑠𝜕𝜕𝑅𝑅
− 𝐾𝐾𝜑𝜑𝑜𝑜�� = 0            (25) 

 
Where 𝑘𝑘 = �𝑥𝑥2 + 𝑦𝑦2 → ∞ 
 
The potential 𝜑𝜑𝑠𝑠 and the Green’s function G would therefore 

be both proportional to the inverse of r power of 1
2
 plus a positive 

value 𝜀𝜀.  
 
𝜑𝜑𝑠𝑠 & 𝐺𝐺 𝛼𝛼 1

𝑅𝑅
1
2+𝜀𝜀

                 (25b) 

 
Here 𝜀𝜀 > 0 
 
To guarantee the far field condition, thus their corresponding 

gradients with r 
 
𝜕𝜕𝜑𝜑𝑠𝑠
𝜕𝜕𝑅𝑅

 & 𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅

 ∝  1

𝑅𝑅
3
2+𝜀𝜀

                (25c) 

 
If we put these together Equation (25c) in the integration 

Equation (24) we have the expression in Equation (26) 
 
lim
𝑅𝑅→∞

�− 1
2𝜋𝜋∬ �𝜑𝜑𝑜𝑜

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
−𝑆𝑆𝑐𝑐

𝐺𝐺 𝜕𝜕𝜑𝜑𝑜𝑜
𝜕𝜕𝜕𝜕
� 𝑎𝑎𝑑𝑑� 𝛼𝛼 lim

𝑅𝑅→∞
�− 1

2𝜋𝜋∬
1

𝑅𝑅2+2𝜀𝜀𝑆𝑆𝑐𝑐
𝑎𝑎𝑑𝑑 𝛼𝛼 lim

𝑅𝑅→∞
�− 1

2𝜋𝜋
1
𝑅𝑅2𝜀𝜀
�� = 0   

                       (26) 
 
When R is very large the boundary integral will be zero in 

Equation (26). The Equation can be now expressed on the body 
surface 𝑆𝑆𝑏𝑏 only as Equations (27) and (28). 

 
𝜑𝜑𝐷𝐷 = − 1

2𝜋𝜋∬ �𝜑𝜑𝐷𝐷
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐺𝐺 𝜕𝜕𝜑𝜑𝐷𝐷

𝜕𝜕𝜕𝜕
�𝑆𝑆𝑏𝑏
𝑎𝑎𝑑𝑑 = 2𝜑𝜑𝑜𝑜  (27) 
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𝜑𝜑𝑠𝑠 = 𝜑𝜑𝐷𝐷 − 𝜑𝜑𝑜𝑜 = − 1
2𝜋𝜋∬ �𝜑𝜑𝐷𝐷

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐺𝐺 𝜕𝜕𝜑𝜑𝐷𝐷

𝜕𝜕𝜕𝜕
�𝑆𝑆𝑏𝑏
𝑎𝑎𝑑𝑑 + 𝜑𝜑𝑜𝑜    (28) 

 
By applying the boundary condition 𝜕𝜕𝜑𝜑𝐷𝐷

𝜕𝜕𝜕𝜕
= 0, into Equation 

(28), we have the expression Equation (29). 
 
𝜑𝜑𝑠𝑠 = − 1

2𝜋𝜋∬ �𝜑𝜑𝐷𝐷
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑆𝑆𝑏𝑏
𝑎𝑎𝑑𝑑 + 𝜑𝜑𝑜𝑜 When 𝜕𝜕𝜑𝜑𝐷𝐷

𝜕𝜕𝜕𝜕
= 0    (29) 

 
By separating or splitting Equation (29) due to 𝜑𝜑𝐷𝐷 = 𝜑𝜑𝑠𝑠 +

𝜑𝜑𝑜𝑜 Equation (18), we have the expression as Equation (30) 
 
𝜑𝜑𝑠𝑠 = − 1

2𝜋𝜋∬ (𝜑𝜑𝑠𝑠 + 𝜑𝜑𝑜𝑜) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑎𝑎𝑑𝑑 + 𝜑𝜑𝑜𝑜𝑆𝑆𝑏𝑏

          (30) 
 
Thus, the final boundary integral equation for the scattering 

potential is given by the expression in Equation (31). 
 
2𝜋𝜋𝜑𝜑𝑠𝑠 + ∬ 𝜑𝜑𝑠𝑠

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑎𝑎𝑑𝑑 = −∬ 𝜑𝜑𝑜𝑜

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑎𝑎𝑑𝑑 + 2𝜋𝜋𝜑𝜑𝑜𝑜𝑆𝑆𝑏𝑏𝑆𝑆𝑏𝑏

      (31) 
 
All the potentials and the Green’s functions are on the body 

surface 𝑆𝑆𝑏𝑏. Equation (31) provides an equation for solving the 
scattering potential. In building the numerical equation for 
solving the scattering potential, we can discretize the body 
surface into n panels and we assume the potential 𝜑𝜑𝑠𝑠 and 𝜑𝜑𝑜𝑜 
would be constants on each small panel, as such the boundary 
integral equation for the scattering potential. 

Thus, the discrete boundary integral Equation (31) can be 
expressed as Equation (32) for n panel. 

 
2𝜋𝜋𝜑𝜑𝑠𝑠𝑘𝑘 + ∑ 𝜑𝜑𝑠𝑠𝑠𝑠 ∬

𝜕𝜕𝜕𝜕𝑙𝑙𝑘𝑘
𝜕𝜕𝜕𝜕𝑙𝑙

𝑎𝑎𝑑𝑑∆𝑠𝑠𝑙𝑙𝑠𝑠=1(𝑠𝑠≠𝑘𝑘) =

∑ 𝜑𝜑𝑜𝑜𝑠𝑠 ∬
𝜕𝜕𝜕𝜕𝑙𝑙𝑘𝑘
𝜕𝜕𝜕𝜕𝑙𝑙

𝑎𝑎𝑑𝑑 + 2𝜋𝜋𝜑𝜑𝑜𝑜𝑘𝑘∆𝑠𝑠𝑙𝑙
𝑁𝑁
𝑠𝑠=1(𝑠𝑠≠𝑘𝑘)            (32)  

 
𝑘𝑘 = (1,2,3, … … . . ,𝑁𝑁), k represents, the panel numbers, and 

in both summation terms, 𝑘𝑘 ≠ 1 , if we define the coefficient 
𝑎𝑎𝑠𝑠𝑘𝑘 = 0 when l equal to k and integration on the small panel ∆𝑠𝑠𝑠𝑠 
is given as the integral of this, when l is not equal to k, thus we 
can establish the simultaneous equation from the scattering 
potential as Equation (33) 

 
𝑎𝑎𝑠𝑠𝑘𝑘 = 0 for l=k  
 
𝑎𝑎𝑠𝑠𝑘𝑘 = ∬ 𝜕𝜕𝜕𝜕𝑙𝑙𝑘𝑘

𝜕𝜕𝜕𝜕𝑙𝑙
𝑎𝑎𝑑𝑑∆𝑠𝑠𝑙𝑙

 for 𝑙𝑙 ≠ 0 

 

⎣
⎢
⎢
⎢
⎢
⎡

2𝜋𝜋 𝑎𝑎12 𝑎𝑎13 . . 𝑎𝑎1𝑁𝑁
𝑎𝑎21 2𝜋𝜋 𝑎𝑎23 . . 𝑎𝑎2𝑁𝑁
𝑎𝑎31

..
𝑎𝑎𝑁𝑁1

𝑎𝑎32
..

𝑎𝑎𝑁𝑁2

2𝜋𝜋 . . 𝑎𝑎3𝑁𝑁
. . . .

.
𝑎𝑎𝑁𝑁3

.

.
. .

. 2𝜋𝜋 ⎦
⎥
⎥
⎥
⎥
⎤

⎝

⎜
⎛

𝜑𝜑𝑠𝑠1
𝜑𝜑𝑠𝑠2
𝜑𝜑𝑠𝑠3

..
𝜑𝜑𝑠𝑠𝑁𝑁⎠

⎟
⎞

=

⎣
⎢
⎢
⎢
⎢
⎡

2𝜋𝜋 −𝑎𝑎12 −𝑎𝑎13 . . −𝑎𝑎1𝑁𝑁
−𝑎𝑎21 2𝜋𝜋 −𝑎𝑎23 . . −𝑎𝑎2𝑁𝑁
−𝑎𝑎31

..
−𝑎𝑎𝑁𝑁1

−𝑎𝑎32
..

−𝑎𝑎𝑁𝑁2

2𝜋𝜋 . . −𝑎𝑎3𝑁𝑁
. . . .

.
−𝑎𝑎𝑁𝑁3

.

.
. .

. 2𝜋𝜋 ⎦
⎥
⎥
⎥
⎥
⎤

⎝

⎜
⎛

𝜑𝜑𝑠𝑠1
𝜑𝜑𝑠𝑠2
𝜑𝜑𝑠𝑠3

..
𝜑𝜑𝑠𝑠𝑁𝑁⎠

⎟
⎞

        (33) 

Equation (33) can be used to solve the scattering potential, it 
can be seen that the potential of the incoming wave is the 
forcing function for the scattering potential, if the forcing is 
zero, the scattering potential would be zero. 

The radiated wave 𝜑𝜑𝑅𝑅 is the sum of the unit amplitude 6 DOF 
motions, 𝜑𝜑𝑗𝑗, as Equation (34) 

 
𝜑𝜑𝑅𝑅 = 𝑖𝑖𝜔𝜔 ∑ 𝐴𝐴𝑗𝑗𝜑𝜑𝑗𝑗6

𝑗𝑗=1                 (34)  
 
Here j means the structure motion mode translational (j=1: 

surge, j=2: Sway, j=3: Heave) and rotational (j=4: Roll, j=5: 
Pitch and j=6: Yaw). 
𝐴𝐴𝑗𝑗 is the motion amplitude of motion mode j 
The boundary condition for the radiation potential is given as 

Equation (35) 
 
𝜕𝜕𝜑𝜑𝑗𝑗
𝜕𝜕𝜕𝜕

= 𝑉𝑉�⃗ .𝑎𝑎�⃗                     (35) 
 
Where V is the velocity of the structure motion, and this 

boundary condition could lead to the boundary conditions for 
the potential 𝜑𝜑𝑗𝑗 of unit amplitude motion as Equation (36) 

 
𝜕𝜕𝜑𝜑𝑗𝑗
𝜕𝜕𝜕𝜕

= 𝑎𝑎𝑗𝑗                     (36) 
 
where j=1, 2, 3, …., 6 
 
so 𝑎𝑎𝑗𝑗 is given as (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3 )= 𝑎𝑎�⃗  for translational motion and 

𝑎𝑎𝑗𝑗 is given as (𝑎𝑎4,𝑎𝑎5,𝑎𝑎6)= 𝑎𝑎�⃗ × 𝑟𝑟 for the rotational motion 
 
 𝑟𝑟 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 
 
Therefore, the boundary integral equation for the radiation 

potential component 𝜑𝜑𝑗𝑗 can be expressed Equation (37) 
 
𝜑𝜑𝑗𝑗 = − 1

2𝜋𝜋∬ (𝜑𝜑𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑠𝑠𝑏𝑏
− 𝐺𝐺

𝜕𝜕𝜑𝜑𝑗𝑗
𝜕𝜕𝜕𝜕

)𝑎𝑎𝑑𝑑 − − 1
2𝜋𝜋∬ (𝜑𝜑𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑠𝑠𝑐𝑐
−

𝐺𝐺
𝜕𝜕𝜑𝜑𝑗𝑗
𝜕𝜕𝜕𝜕

)𝑎𝑎𝑑𝑑                     (37)  
 
Similar to the scattered potential, based on the far field 

boundary conditions, it can be seen both the radiation potential 
and Green’s function in the far field would be proportional to 
the inverse of R power of 1

2
 plus the 𝜀𝜀  

 
𝜑𝜑𝑗𝑗  & 𝐺𝐺 𝛼𝛼 1

𝑅𝑅
1
2+𝜀𝜀

 Where 𝜀𝜀 > 0 

 
And their differentiation with regard to R would be 
 
 

𝜕𝜕𝜑𝜑𝑗𝑗
𝜕𝜕𝑅𝑅

& 𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅
∝ 1

𝑅𝑅
2
3+𝜀𝜀

 

 
And the integration on the control surface 𝑆𝑆𝑐𝑐 would be 

proportional to Equation (38) 
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lim
𝑅𝑅→∞

�− 1
2𝜋𝜋∬ �𝜑𝜑𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐺𝐺

𝜕𝜕𝜑𝜑𝑗𝑗
𝜕𝜕𝜕𝜕
� 𝑎𝑎𝑑𝑑𝑠𝑠𝑐𝑐

� 𝛼𝛼 lim
𝑅𝑅→∞

�− 1
2𝜋𝜋∬

1
𝑅𝑅2+2𝜀𝜀𝑠𝑠𝑐𝑐

𝑎𝑎𝑑𝑑�  
                       (38)  

 
And when R is very large, so the integration would be zero. 
Hence the boundary integral Equation (38) is now expressed 

as Equation (39) on the body surface 𝑑𝑑𝑏𝑏 only. 
 
𝜑𝜑𝑗𝑗 = − 1

2𝜋𝜋∬ �𝜑𝜑𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐺𝐺

𝜕𝜕𝜑𝜑𝑗𝑗
𝜕𝜕𝜕𝜕
� 𝑎𝑎𝑑𝑑𝑠𝑠𝑏𝑏

           (39) 
 
And by applying the boundary condition for the radiation 

potential in Equation (40). 
 
𝜕𝜕𝜑𝜑𝑗𝑗
𝜕𝜕𝜕𝜕

= 𝑎𝑎𝑗𝑗                     (40) 
 
We have the final boundary equation for the radiation 

potential as Equation (41) 
 
2𝜋𝜋𝜑𝜑𝑗𝑗 + ∬ 𝜑𝜑𝑗𝑗

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∬ 𝑎𝑎𝑗𝑗𝐺𝐺𝑎𝑎𝑑𝑑𝑠𝑠𝑏𝑏𝑠𝑠𝑏𝑏
           (41) 

 
All these potentials and the Green’s function on the body 

surface 𝑑𝑑𝑏𝑏, this is the equation we can use for solving the 
radiation potential 𝜑𝜑𝑗𝑗. Similar to the numerical scheme for the 
scattering potential. We can assume the radiation potential 𝜑𝜑𝑗𝑗 
and the normal vector component 𝜑𝜑𝑗𝑗 would be constants on 
each small panel, as such the discrete boundary integral 
equation for the radiation potential is given as, 

 
2𝜋𝜋𝜑𝜑𝑗𝑗𝑘𝑘 + ∑ 𝜑𝜑𝑗𝑗𝑖𝑖𝑁𝑁

𝑖𝑖=1(𝑖𝑖≠𝑘𝑘) ∬ 𝜕𝜕𝜕𝜕𝑖𝑖𝑘𝑘
𝜕𝜕𝜕𝜕𝑖𝑖∆𝑠𝑠𝑖𝑖

𝑎𝑎𝑑𝑑 =

+∑ 𝑎𝑎𝑗𝑗𝑖𝑖 ∬ 𝐺𝐺𝑖𝑖𝑘𝑘𝑎𝑎𝑑𝑑∆𝑠𝑠𝑖𝑖
𝑁𝑁
𝑖𝑖=1(𝑖𝑖≠𝑘𝑘)                (42)  

 
j = 1, 2, 3, ……, 6 
 
k = 1, 2, 3, ……., N 
 
if we define the coefficient 
 
𝑎𝑎𝑖𝑖𝑘𝑘 = 0 for i=k and 𝑏𝑏𝑖𝑖𝑘𝑘 = 0 for i=k 
 
𝑎𝑎𝑖𝑖𝑘𝑘 = ∬ 𝜕𝜕𝜕𝜕𝑖𝑖𝑘𝑘

𝜕𝜕𝜕𝜕𝑖𝑖∆𝑠𝑠𝑖𝑖
𝑎𝑎𝑑𝑑 𝑖𝑖 ≠ 𝑘𝑘 & 𝑏𝑏𝑖𝑖𝑘𝑘 = ∬ 𝐺𝐺𝑖𝑖𝑘𝑘∆𝑠𝑠𝑖𝑖

𝑎𝑎𝑑𝑑 𝑓𝑓𝑜𝑜𝑟𝑟 𝑖𝑖 ≠ 𝑘𝑘  (43) 

 
Then we can obtain the simultaneous equation for the 

radiation potential. This Equation (43) can be used to solve the 
radiation potential. 

 

⎣
⎢
⎢
⎢
⎢
⎡

2𝜋𝜋 𝑎𝑎12 𝑎𝑎13 . . 𝑎𝑎1𝑁𝑁
𝑎𝑎21 2𝜋𝜋 𝑎𝑎23 . . 𝑎𝑎2𝑁𝑁
𝑎𝑎31

..
𝑎𝑎𝑁𝑁1

𝑎𝑎32
..

𝑎𝑎𝑁𝑁2

2𝜋𝜋 . . 𝑎𝑎3𝑁𝑁
. . . .

.
𝑎𝑎𝑁𝑁3

.

.
. .

. 2𝜋𝜋 ⎦
⎥
⎥
⎥
⎥
⎤

⎝

⎜
⎛

𝜑𝜑𝑗𝑗1
𝜑𝜑𝑗𝑗2
𝜑𝜑𝑗𝑗3

..
𝜑𝜑𝑗𝑗𝑁𝑁⎠

⎟
⎞

=

⎣
⎢
⎢
⎢
⎢
⎡ 0 𝑏𝑏12 𝑏𝑏13 . . 𝑏𝑏1𝑁𝑁
𝑏𝑏21 0 𝑏𝑏23 . . 𝑏𝑏2𝑁𝑁
𝑏𝑏31

..
𝑏𝑏𝑁𝑁1

𝑏𝑏32
..

𝑏𝑏𝑁𝑁2

0 . . 𝑏𝑏3𝑁𝑁
. . . .
.

𝑏𝑏𝑁𝑁3
.
.

. .
. 0 ⎦

⎥
⎥
⎥
⎥
⎤

⎝

⎜
⎛

𝑎𝑎𝑗𝑗1
𝑎𝑎𝑗𝑗2
𝑎𝑎𝑗𝑗3

..
𝑎𝑎𝑗𝑗𝑁𝑁⎠

⎟
⎞

          (44)  

 
From Equation (44), it can be seen that the unit amplitude 

motion 𝑎𝑎𝑗𝑗 of the structure is the forcing, thus if the forcing is 
zero, for instance, when the structure is fixed, the radiation 
potential would be zero. 

Once the relevant potentials functions have been solved, the 
hydrostatic, hydrodynamic forces and the moments can be 
calculated. Which would include the hydrostatic forces, wave 
exciting forces, as well as the radiation force in terms of added 
mass and the radiation damping coefficient. 

The fluid pressure can be simply calculated from Bernoulli’s 
equation as stated in Equation (45). 

 
𝑃𝑃 = −𝜌𝜌 𝜕𝜕∅

𝜕𝜕𝑡𝑡
− 1

2
𝜌𝜌∇∅.∇∅ − 𝜌𝜌𝑔𝑔𝑧𝑧            (45)  

 
∅ is the time dependent total velocity potential 
 
For many practical applications in wave-structure 

interactions, the higher-order term is normally omitted in the 
analysis for the first-order forces and motions, thus Equation 
(45) is reduced to Equation (46). 

 
𝑃𝑃 = −𝜌𝜌 𝜕𝜕∅

𝜕𝜕𝑡𝑡
− 𝜌𝜌𝑔𝑔𝑧𝑧                 (46)  

 
Equation (46) is the time domain pressure and the pressure 

can be express in frequency domain as Equation (47). 
 
𝑃𝑃 = −𝑖𝑖𝜔𝜔𝜌𝜌𝜑𝜑 − 𝜌𝜌𝑔𝑔𝑧𝑧                (47)  
 
𝜑𝜑 is the complex amplitude of the potential function 
 
So, substituting the diffraction and radiation potentials into 

the linearized pressure, we have Equation (48) which combined 
the diffraction pressure, radiating pressure and hydrostatic 
pressure. 

 
𝑃𝑃 = −𝑖𝑖𝜔𝜔𝜌𝜌�𝜑𝜑𝐷𝐷 + 𝑖𝑖𝜔𝜔∑ 𝐴𝐴𝑗𝑗𝜑𝜑𝑗𝑗6

𝑗𝑗=1 � − 𝜌𝜌𝑔𝑔𝑧𝑧        (48)  
 
Relating to Bulkheads: 
The influence of bulkheads comes into play in several ways, 

and these aren't directly in the above equations but rather in how 
they are applied and solved. 

Geometry: The hull surface S in the BIE now includes the 
bulkheads. The number and placement of bulkheads directly 
affect the shape of S. 

Internal Domains: If you're considering sloshing, you'll have 
additional internal free surfaces within the tanks created by the 
bulkheads. This would require solving the Laplace equation 
(and BIE) in these internal domains as well, with appropriate 
coupling conditions at the bulkheads. 
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Structural Response: The pressure p calculated above is then 
applied as a load on the bulkheads. The bulkhead thickness will 
determine how the bulkhead responds structurally (deflection, 
stress). This requires a separate structural analysis (e.g., Finite 
Element Method) using the pressure from the BEM as input. 

Time Domain: For time-domain analysis, the equations are 
solved at discrete time steps. The Green's function G becomes 
time-dependent, G(x,ξ,t), making the computation significantly 
more complex. 

The core of the hydrodynamic pressure calculation is the 
BIE. The influence of bulkhead number and thickness is 
incorporated by: 

1. Modifying the geometry S in the BIE. 
2. Considering internal free surfaces in tanks (if sloshing 

is relevant). 
3. Using the pressure p as a load in a separate structural 

analysis of the bulkheads to determine stress based on 
thickness. 

There is no single equation. The BIE, along with the 
equations for pressure and structural response, form a coupled 
system that must be solved numerically. The Green's function 
is the most computationally intensive part, and its form depends 
on the specific wave conditions and boundary conditions of 
your problem. 

The containership model use for the simulation in this paper 
can be found in our recently published work [11]-[13]. 

4. Results 

 
Fig. 2.  Hydrodynamics pressure mapping on the entire vessel 

 
The hydrodynamic pressure mapping on the container vessel 

as shown in Figure 2 reveals how wave forces interact with the 
hull surface. The color gradient, ranging from blue (low 
pressure) to red (high pressure), clearly indicates areas where 
hydrodynamic forces are most concentrated. High-pressure 
zones, particularly around the bow and along the vessel’s sides, 
are typical as these regions face direct impact from incoming 
waves. The bow experiences the highest pressures because it 
encounters the waves first, absorbing much of their energy, 
especially under rough sea conditions. 

From a structural perspective, these high-pressure areas are 
crucial since they undergo repeated loading and unloading as 
waves impact the vessel. Over time, this repeated stress can lead 
to fatigue, emphasizing the need for additional reinforcements 
in these regions to prevent potential structural failure. The 
visualization suggests that the vessel can handle moderate wave 
pressures, but sustained high pressures in these regions could 

strain the hull material, especially in prolonged rough seas. 
Operationally, this pressure distribution provides valuable 
insights for cargo management and load balancing. Knowing 
where wave forces are most intense helps ensure that sensitive 
cargo is placed in lower-pressure zones, while heavier loads 
might be positioned to help balance the impact stresses. 

In comparing the hydrodynamic pressure distributions for the 
two vessel configurations, Figure 3, with 20 bulkheads and a 
25mm thickness, demonstrates a more extensive pressure range, 
with areas experiencing up to 180 N/mm², especially towards 
the ends and along the bulkhead walls. The higher bulkhead 
counts and thicker walls likely increase structural resistance, 
leading to higher concentrated pressure zones as the structure is 
more rigid and can withstand greater loads without 
deformation. 

 

 
Fig. 3.  Hydrodynamic pressure at twenty bulkhead and 25mm thickness 

 
Figure 2, with 10 bulkheads and a 20mm thickness, shows a 

reduced maximum pressure range of around 160 N/mm². The 
lower number of bulkheads and thinner walls distribute the load 
more evenly with fewer rigid reinforcements, resulting in a 
slightly lower critical pressure. This configuration, while 
structurally lighter, may be more susceptible to deformation 
under high loads, as indicated by the reduced pressure extremes. 
The critical pressure values are higher in Figure 3, indicating 
that the vessel with 20 bulkheads and a 25mm thickness can 
sustain greater localized pressures, while Figure 2, with fewer 
bulkheads and thinner walls, experiences slightly lower critical 
pressures, providing a more evenly distributed load at the cost 
of potential flexibility. 

 

 
Fig. 4.  Hydrodynamic pressure at twenty bulkhead with 15mm thickness 

 
 The hydrodynamic pressure distributions for the two vessel 

configurations, Figure 4, with 20 bulkheads and a 15mm 
thickness, demonstrates a slightly less extensive pressure range, 
with areas experiencing up to 180 N/mm² when compared to 
Figure 3 with 20 bulkheads and 25mm plate thickness, 
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especially towards the ends and along the bulkhead walls. The 
higher bulkhead count and thicker walls likely increase 
structural resistance, leading to higher concentrated pressure 
zones as the structure is more rigid and can withstand greater 
loads without deformation. 

Figure 2, with 10 bulkheads and a 20mm thickness, shows a 
reduced maximum pressure range of around 160 N/mm². The 
lower number of bulkheads and thinner walls distribute the load 
more evenly with fewer rigid reinforcements, resulting in a 
slightly lower critical pressure. This configuration, while 
structurally lighter, may be more susceptible to deformation 
under high loads, as indicated by the reduced pressure extremes. 
The critical pressure values are higher in Figure 4, indicating 
that the vessel with 20 bulkheads and a 15mm thickness can 
sustain greater localized pressures, while Figure 2, with fewer 
bulkheads and thinner walls, experiences slightly lower critical 
pressures, providing a more evenly distributed load at the cost 
of potential flexibility. 

 

 
Fig. 5.  Hydrodynamic pressure at five bulkhead and 25mm thickness 

 
In comparing the hydrodynamic pressure distributions across 

the different bulkhead configuration, we observe notable 
differences due to the structural configurations of the vessel 
models, specifically in terms of the number of bulkheads and 
thickness of the material. Figure 5, which represents a vessel 
with 5 bulkheads and a material thickness of 25 mm, displays a 
more dispersed pressure distribution, with higher 
concentrations at the ends of the vessel. This configuration 
seems to allow the pressure to spread more evenly across the 
surface areas. 

Figure 2, with 10 bulkheads and a 20 mm thickness, shows a 
more compartmentalized distribution of pressure, likely due to 
the increased number of bulkheads that partition the pressure 
zones. The thinner material and additional bulkheads provide 
more localized confinement of the pressure, resulting in visibly 
distinct pressure areas within each compartment defined by the 
bulkheads 

When comparing the critical values, Figure 5 exhibits higher 
maximum and minimum pressure values, reaching close to 180 
N/mm², whereas Figure 2 has slightly reduced extremes, with 
pressures peaking at around 160 N/mm². This difference 
suggests that the structural configuration with fewer bulkheads 
and thicker material experiences greater pressure intensity, 
likely due to reduced internal partitioning. On the other hand, 
the vessel with more bulkheads and thinner material distributes 
the pressure in smaller, more contained sections, leading to 
slightly lower critical pressures. This analysis highlights how 

the design choice between bulkhead quantity and material 
thickness can significantly impact the vessel's hydrodynamic 
pressure response. 

5. Conclusion 
The hydrodynamic pressure mapping on a container vessel 

reveals how wave forces interact with the hull surface, clearly 
indicating areas where hydrodynamic forces are most 
concentrated, with high-pressure zones, particularly around the 
bow and along the vessel’s sides, being typical as these regions 
face direct impact from incoming waves. These high-pressure 
areas undergo repeated loading and unloading as waves impact 
the vessel, potentially leading to fatigue over time, emphasizing 
the need for additional reinforcements. The pressure 
distribution provides valuable insights for cargo management 
and load balancing, helping ensure that sensitive cargo is placed 
in lower-pressure zones. Comparing hydrodynamic pressure 
distributions for vessels with different configurations, a vessel 
with 20 bulkheads and a 25mm thickness demonstrates a more 
extensive pressure range, with areas experiencing up to 180 
N/mm², especially towards the ends and along the bulkhead 
walls, indicating that higher bulkhead counts and thicker walls 
increase structural resistance, leading to higher concentrated 
pressure zones. In contrast, a vessel with 10 bulkheads and a 
20mm thickness shows a reduced maximum pressure range of 
around 160 N/mm², with a more evenly distributed load, 
potentially at the cost of increased flexibility. Similarly, a vessel 
with 20 bulkheads and 15mm thickness shows a slightly less 
extensive pressure range when compared to the 25mm 
thickness, again indicating that thickness plays a role in the 
pressure range. When comparing hydrodynamic pressure 
distributions across different bulkhead configurations, a vessel 
with 5 bulkheads and a 25 mm thickness displays a more 
dispersed pressure distribution, with higher concentrations at 
the ends of the vessel, whereas a vessel with 10 bulkheads and 
a 20 mm thickness shows a more compartmentalized 
distribution of pressure. The critical pressure values are higher 
in the vessel with fewer bulkheads and thicker material, 
suggesting greater pressure intensity, while the vessel with 
more bulkheads and thinner material distributes the pressure in 
smaller, more contained sections, leading to slightly lower 
critical pressures. Therefore, the hydrodynamic pressure 
distribution on a vessel's hull is significantly influenced by the 
number of bulkheads and the thickness of the vessel's plating, 
directly affecting the vessel's rigidity, load distribution, and 
ability to withstand hydrodynamic forces, and the choice 
between bulkhead quantity and plate thickness is a trade-off 
between rigidity and flexibility, requiring careful consideration 
of the vessel's intended operating conditions and cargo type. 
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