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Abstract: Accurate power forecasting plays a crucial role in 

optimizing the performance of digital VLSI circuits, particularly 
as design complexities continue to grow. This research delves into 
the use of diffusion models to create synthetic data aimed at 
improving the accuracy of power predictions in machine learning 
frameworks. Running simulations within the HSPICE 
environment and using advanced CMOS nodes yielded realistic 
datasets that were employed to train the proposed models. The 
synthetic data not only resembled real-world data closely but also 
effectively complemented limited datasets, leading to a significant 
improvement in power prediction performance metrics. This 
study underscores the potential of using data augmentation 
through diffusion models as an innovative strategy in VLSI design. 
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1. Introduction 
Recently, there has been considerable progress in generative 

AI thanks to machine learning methods like Generative 
Adversarial Networks (GANs) [7], Variational Autoencoders 
(VAEs) [9], and Denoising Diffusion Probabilistic Models 
(DDPMs) [8]. These models are great at producing high-quality 
synthetic data, which promotes innovation in areas like image 
creation, text writing, and speech processing [6]. Diffusion 
models, in particular, have shown to be a strong approach for 
generating realistic datasets, especially when there is a lack of 
available data [3]. 

In VLSI circuit design, using synthetic data helps overcome 
issues such as the high costs associated with data collection and 
limitations in computational power [22]. Diffusion models 
produce complex datasets that help with tasks like assessing 
performance, predicting power usage, and testing circuits 
within electronic design automation (EDA) processes [12], 
[13]. By mimicking how circuits behave in the real world, these 
models overcome the challenges of scalability and availability 
found in conventional data collection techniques, especially in 
cutting-edge CMOS technologies [20]. 

This research investigates how DDPMs can be utilized to 
create synthetic datasets for predicting power in VLSI. By using 
synthetic data, machine learning models can be improved,  

 
particularly in analyzing power dissipation, which is assessed 
using metrics such as Mean Absolute Error (MAE), Mean 
Squared Error (MSE), and Mean Absolute Percentage Error 
(MAPE) [26], [27]. The results highlight the potential of 
diffusion models to revolutionize VLSI processes, allowing for 
machine learning-based design and enhancement while 
improving EDA techniques for power estimation and 
evaluation [28]. 

2. Related Works 
The lack of sufficient data presents a serious obstacle in the 

training of machine learning (ML) models, especially in the 
field of VLSI design, where having quality datasets is crucial 
for achieving accuracy [13]. While large datasets of up to 15K 
or 50K samples are often required [12], [14], the costs, time, 
and effort involved in acquiring such data limit scalability and 
efficiency [8], [10]. Generating synthetic data presents a 
versatile way to create realistic datasets that enhance machine 
learning performance in various applications [15]–[23], 
addressing challenges like computation costs and limited 
dataset availability, especially in VLSI [22]. Generative models 
like Variational Autoencoders (VAEs) [9], Generative 
Adversarial Networks (GANs) [7], and Diffusion Models [8] 
excel in creating high-fidelity synthetic data, with diffusion 
models particularly suited for high-dimensional VLSI datasets 
[24], [25]. This study builds on diffusion models to forecast 
power usage in VLSI circuits by creating synthetic datasets that 
help improve machine learning-based predictions of power 
dissipation, thereby enhancing the efficiency of electronic 
design automation (EDA). 

3. The Dataset 
This study leverages datasets that include the design, process, 

and performance features of twelve essential digital cells, as 
outlined in Table I, to assess the accuracy of power predictions 
made by machine learning models. Training data is generated 
with HSPICE, a robust Electronic Design Automation (EDA) 
tool [26], employing random vectors from Gaussian 
distributions to represent process parameters, with ±10% 
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variations at 3σ in 22nm CMOS High-k metal gate (HKMG) 
technology. Predictive Technology Models (PTM) help to 
thoroughly simulate these changes [12]. The dataset includes 
parameters for PMOS and NMOS process characteristics, 
temperature changes ranging from −55◦C to 125◦C, and supply 
voltage variations of ±10% around 0.8V [8]. The load 
capacitance is changed in a similar manner to create realistic 
scenarios. Power dissipation measurements, which are derived 
from HSPICE Monte-Carlo simulations, account for variations 
in PVT (Process, Voltage, Temperature) to ensure the dataset 
accurately represents real-world conditions. Additionally, 
diffusion models enhance the dataset, increasing its diversity 
and scalability to boost predictive performance for tasks related 
to power prediction [12], [22]. 

4. Synthetic Circuit-Data Generation Using Diffusion 
Models 

The design and optimization of VLSI circuits significantly 
depend on parametric information that includes design 
specifications, process details, and performance metrics, which 
are crucial for machine learning tasks such as predicting power 
usage and validating designs. To address the issues of limited 
data and high acquisition costs, this study utilizes denoising 
diffusion probabilistic models (DDPMs) to create synthetic 
datasets specifically devised for VLSI applications. By 
concentrating on 22nm CMOS technology, this method 
improves the accuracy of ML models in situations where data 
is scarce, while also providing scalability and adaptability for a 
wider range of uses. 

A. Development of a Denoising Diffusion Probabilistic Model 
for VLSI Circuit Information 

Diffusion models serve as generative frameworks that aim to 
understand the fundamental data distribution by gradually 
introducing random noise into the input data and subsequently 
reversing this process to recreate the original data. This two-
step approach consists of the following processes: 

Forward Process: In the forward diffusion process, the 
original data gradually receives Gaussian noise at multiple time 
intervals. This procedure is mathematically formulated as: 

 
Here, zt represents the data at time step t, with z0 denoting the 

original (real) data. The term α¯t signifies the cumulative noise 
scaling factors, and ϵ is sampled from a standard normal 
distribution. The forward process shifts the data into a state 
primarily influenced by noise, yet it maintains crucial structural 
details needed for recovery. 

Reverse Process: The reverse process seeks to recreate the 
original data from the noisy version produced in the forward 
process. A neural network, which has been trained on the 
forward diffusion process, estimates the noise added at every 
step. The denoising process is expressed as: 

 

 
 

where fθ represents the learned denoising function 
parameterized by the network, and βt controls the amount of 
variance added at each step. By applying this process 
repeatedly, we can accurately restore the original distribution of 
data, which makes this framework particularly suitable for 
high-dimensional datasets, such as those involving VLSI circuit 
parameters, where having noise-resistant representations is 
essential. Generation of New Data: After being trained, 
diffusion models create artificial datasets by executing the 
reverse procedure on random noise samples from N(0,1). This 
feature enhances their effectiveness in improving datasets when 
data is limited. To keep things straightforward, this study 
employs an encoder-decoder structure for the reversing process 
rather than opting for more intricate designs such as UNET 
[27]. 

B. Qualitative Assessment of Generated Synthetic Data 
Evaluating synthetic datasets generated by diffusion models 

for circuit design requires metrics that focus on performance. 
Unlike conventional metrics used for image generation, like 
inception scores or Frechet inception distances, circuit-related 
tasks emphasize accuracy metrics such as Mean Absolute 
Percentage Error (MAPE) in accordance with VLSI design 
standards [28]. The outputs of synthetic data are juxtaposed 
with actual HSPICE-simulated data, with MAPE serving as the 
primary benchmark. A diffusion model that has been trained on 
500 authentic samples creates synthetic data after reaching 
convergence. Continuous tuning of hyperparameters ensures 
compatibility with real-world distributions, facilitating 
dependable performance assessment. Utilizing synthetic 
datasets helps to mitigate data shortages in VLSI tasks, such as 
power forecasting, thus enhancing precision and scalability for 
electronic design automation (EDA) purposes. 

5. Experimental Setup and Model Architecture 
The training of Denoising Diffusion Probabilistic Models 

(DDPMs) used Python-3.8.16 in VS Code with libraries like 
Pandas, NumPy, TensorFlow-Keras from TensorFlow-2.0, 
Matplotlib, and Scikit-learn. Using mixed precision training 
with an NVIDIA RTX GPU and CUDA enables efficient 
management of large datasets, which leads to reduced memory 
usage and faster convergence. As noted in [8], the forward 
process gradually varies βt from 0.001 to 0.02, introducing noise 
while preserving the integrity of the data. The reverse process 
employs an encoder-decoder framework [27] that incorporates 
batch normalization and Leaky ReLU activations to reconstruct 
the data distribution. 

6. Results 
To assess how well the proposed diffusion model performs, 

we compared the synthetic data it generated with actual data. 
This was done using various metrics including Mean Absolute 
Error (MAE), Mean Squared Error (MSE), and Mean Absolute 
Percentage Error (MAPE), as mentioned in Section IV-B. 
These metrics help us measure how closely the synthetic data 
resembles the real data, highlighting the diffusion model’s 
ability to accurately represent the underlying data distributions 
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for important parameters, including load capacitance, power 
dynamic, power static, supply voltage, and temperature. 
Density plots provide a clearer view of the strong correlation 
between the two datasets, confirming that the synthetic data is 
of high quality for subsequent tasks such as power prediction. 
When we compare different methods, it’s scarcity. The model 
demonstrated stability across different training data sizes, 
showing only slight decreases in MAPE and MAE, which 
underlines its usefulness in VLSI applications where labelled 
data might be scarce. 

 
Fig. 1.  Assessment methodology for data produced artificially 

 

 
Fig. 2.  Density plots comparing real and synthetic data distributions for 

supply voltage, temperature, load capacitance, power 
 

Through optimization studies and hyper-parameter 
adjustments, the model’s performance was significantly 
improved. A five-layer architecture proved to be the best fit for 
datasets containing 17 to 19 attributes, while a six-layer setup 
excelled with 21 attributes, striking a good balance between 
complexity and accuracy. Using a learning rate of 0.001 
effectively minimized MAPE and allowed for smooth 
convergence. These findings underscore the diffusion model’s 
capability to produce high-quality synthetic data and support 
power prediction tasks in VLSI design, effectively tackling 
issues related to data scarcity. 

 
Table 2 

Performance comparison of models with varying layers across all features 
No. of layers Avg. of MAPE (%) 
4 hidden layers 14.5 
5 hidden layers 23.51 

 
Clear that the diffusion-based approach consistently delivers 

better accuracy and scalability, especially in scenarios of data.  
 

Table 3 
Comparison of metrics evaluated across different learning rates for model 

training 
Metrics Learning Rate 
MAE 0.01 
MSE 0.005 
MAPE 0.001 

7. Conclusion 
This research presents a customized diffusion model 

designed to create synthetic datasets for VLSI circuit design, 
tackling the difficult issue of obtaining high-quality real world 
training data, which is both costly and scarce. Through 
simulations conducted in the HSPICE environment, the model 
has been validated and effectively generates synthetic data with 
a low mean absolute percentage error (MAPE) when compared 
to real-world results, while maintaining the statistical 
characteristics of the original dataset. Tests conducted on 
twelve essential digital circuit designs confirm the 
dependability of the synthetic data in improving the accuracy of 
machine learning models, thereby minimizing the dependence 
on large volumes of real-world data. By incorporating synthetic 
data into existing workflows, this method provides a scalable 
and cost-efficient strategy for data augmentation, proving 
especially beneficial for complex VLSI design tasks like fault 
detection, performance enhancement, and thermal 
management. The study underscores the promise of diffusion 
models in solving wider challenges within electronic design 
automation (EDA) and the semiconductor sector, setting the 
stage for future advancements. 
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Table 1 
A comparison of the statistics for real and synthetic data utilized in this study (Input parameters for assessment: supply voltage, temperature, load capacitance; 

output parameters for assessment: power dissipation) 
Dataset Parameters Dataset Parameters 
NOT gate power 17 Three input AND-OR circuit power 21 
Two input NAND gate power 19 Full adder power 21 
Two input AND gate power 19 2:1 Multiplexer power 21 
Two input NOR gate power 19 Three input NAND gate power 21 
Two input OR gate power 19 Three input AND gate power 21 
Two input XOR gate power 19 Three input NOR gate power 21 

 
Table 4 

A comparison of statistics from actual and generated data with associated error metrics (Mean Absolute Error (MAE), Mean Squared Error (MSE), and Mean 
Absolute Percentage Error (MAPE)) 

Feature Real Mean Synthetic Mean Real Std Synthetic Std MAE MSE MAPE 
Supply Voltage 0.5598 0.3070 0.2548 0.3791 0.4480 0.2656 0.8682 
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Power Static 0.5664 0.3628 0.2636 0.4096 0.4721 0.2919 1.0437 
Power Dynamic 0.5540 0.1864 0.2651 0.2654 0.4554 0.2775 0.7928 
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