
International Journal of Modern Developments in Engineering and Science  
Volume 4, Issue 7, July 2025 
https://www.ijmdes.com | ISSN (Online): 2583-3138 

 

 
*Corresponding author: jbkkdoyle1@gmail.com   
 
 

1 

 
Abstract: Adiabatic circuits use a varying voltage source 

allowing for the energy to flow back and be reused, reducing 
power consumption. A subthreshold circuit is a circuit which 
operates at below transistor threshold voltages, which is the 
voltage it takes for the transistor to switch on. Multiple blocks 
using subthreshold CMOS and adiabatic were designed and 
simulated in ltspice and Xscheme using the opensource Skywater 
130nM PDK. These blocks include baseline subthreshold D 
Flipflop, 1 Mhz subthreshold integrated oscillator, sub adiabatic 
modulo 10 divider (order of magnitude lower power than 
conventional Boolean approach), adiabatic phase generator, low 
power relaxation oscillator. These blocks can be combined to form 
a lower power system. 

 
Keywords: Adiabatic, Subthreshold CMOS Logic, Opensource 

Integrated circuit design software. 

1. Introduction 
Being successful with the open-source tools requires 

knowing how to use all the tools in tandem with each other. For 
example, most tools used in university for schematics also have 
a simulator. With the docker container, Xschem and NGspice 
are separate (however closely tied together). A similar thing can 
be said about the open-source layout tools that come with the 
container, Magic and Klayout. Although the two tools can be 
used separately, using them together could prove useful for 
speeding up workflow. Magic allows for the automatic 
generation of devices that are ready to be routed in a design. 
Klayout is closer to Cadence Virtuoso than magic and is a bit 
simpler for routing designs. Klayout also supports scripts made 
in Python and Ruby that can speed up workflow. One such 
example is an automatic via generator created by the open-
source ASIC community. 
 

 
Fig. 1.  Low power D Flipflop in the divide by two configurations 

 
 
 

 
 

 
Fig. 2.  Output of the low power D Flip flop in the divide by two configurations, 
Ngspice 130nM PDK 

 

 
Fig. 3.  Low power D Flip flop roughly ~50um wide 

 
 Devices Generated in Magic Design routed in Klayout: 

Another circuit that was designed is the sub adiabatic modulo 
circuit. This circuit is able to do an arbitrary division based on 
changing resistance and capacitance value, allowing high 
divisions at significantly lower power than drawn by a divisor 
made by toggle flip-flops. 
 

 
Fig. 4.  Xschem schematic of sub adiabatic modulo circuit 

Adiabatic Logic and Subthreshold CMOS 
Circuit Design Using Opensource Software  

Avijit Jutla1, Justin Xu2, Yinxuan Qiao3, Daniel Abreu4, Ziyuan Zheng5, James T. Doyle6* 

1,2,3,4,5,6Department of Electrical Engineering, Arizona State University, Tempe, Arizona, United States 



Jutla et al.  International Journal of Modern Developments in Engineering and Science, VOL. 4, NO. 7, JULY 2025                                                2 

In addition, a partially adiabatic D flip-flop was designed for 
low-power applications, using energy recovery techniques. It 
incorporates clock-controlled transmission gates and latches for 
state retention with minimal heat dissipation. The lower flip-
flop section, positioned toward the bottom, functions as a 
storage element during clock transitions, aiding in reversible 
logic and charge recycling. The use of stacked inverters and 
complementary pass-transistor logic supports dynamic and 
energy-efficient switching behavior in thermally aware 
systems. 
 

 
Fig. 5.  Xschem schematic of partially adiabatic flipflop 

2. Testing 
The previous team of the ASU capstone had designed two 

circuits which were taped out to the Tiny Tapeout 5 and Tiny 
Tapeout 6 chips. The project numbers are 328 on Tiny Tapeout 
5 and 423 on Tiny Tapeout 6. On Tiny Tapeout 5 the circuit is 
an 8 bit gray code counter. A gray code counter is a counter that 
switches only one bit at a time from number to number therefore 
decreasing the possibilities of an error. The counter on the Tiny 
Tapeout chip was tested for speed which showed that at 10Mhz 
the output waveform started to distort and at 50Mhz the clock 
of the input waveform no longer matched the output waveform. 
The Cyclic Redundancy check, on the Tiny Tapeout 6 chip, was 
tested for functionality. There were 3 ways the chip was 
verified, the first of which was using the Wokwi design done 
by the original team and the other two were using an Arduino 
to generate 128 bits of random data and then add a bit flip to 
simulate an error. In the functionality test it was found both the 
Wokwi design and Arduino simulation were able to match the 
design very well. Results published on Github Opensource 
projects (see references). 
 

 
Fig. 6.  Gray code 40MHz distorted waveforms 

 
Fig. 7.  Gray code 10KHz waveforms 

 

 
Fig. 8.  Gray code 50 Mhz (Unmatched clock and output) 

 

 
Fig. 9.  8-bit CRC design 

 

 
Fig. 10.  8-bit CRC Wokwi design 

 

 
Fig. 11.  8-bit CRC Arduino code 



Jutla et al.  International Journal of Modern Developments in Engineering and Science, VOL. 4, NO. 7, JULY 2025                                                3 

3. Results 
Table 1 

 

4. Conclusion 
 This paper presented a study on adiabatic logic and 
subthreshold CMOS circuit design using opensource software.  

References 
[1] D. Maksimovic, V. G. Oklobdfija, B. Nikolic, and K. W.  Current, 

"Clocked CMOS Adiabatic Logic with Integrated Single-Phase       Power 
Clock Supply, Experimental Results," ACM, Inc. pp. 323-327. August 
1997. 

[2] C. Luo and 1. Hu, "Single-phase adiabatic flip-flops and   sequential 
circuits using improved CAL circuits," IEEE ASICON'07, Guilin, China, 
pp. 126-129. 2007. 

[3] H. Ni, 1. Hu,"Near-Threshold Flip-Flops Using Clocked Adiabatic Logic 
in Nanometer CMOS Processes,", Key Engineering Materials Journal, 
vols.460-461, pp 837-842, 2011. 

[4] D. Bol, D. Kamel, D. Flandre, and I. Legat, "Nanometer MOSFETeffects 
on the minimum-energy point of 45nm subthreshold logic," Proceedings 
of the 14th ACM IEEE international symposium on Lowpower 
electronics and design, August 2009. 

[5] D. Markovic, C. C. Wang" Alarcon, L.P. Alarc6n, T. Liu, 1. M. Rabaey, 
"Ultralow-Power Design in Near-Threshold Region," Proceedings of the 
IEEE vol. 98(2), pp.237-252, 2010. 

[6] Minakshi Sanadhya, M. Vinoth Kumar. “Recent Development in Efficient 
Adiabatic Logic Circuits and Power Analysis with CMOS Logic” 3rd 
International Conference on Recent Trends in Computing 2015 (ICRTC-
2015). 

[7] Ragh Kuttappa, Steven Khoa, Leo Filippini, Vasil Pano, and Baris Taskin 
“Comprehensive Low Power Adiabatic Circuit Design with Resonant 
Power Clocking” Drexel University, Philadelphia, PA, USA 2020. 

[8] Generic Structures: First-Order Positive Feedback Produced for the 
System Dynamics in Education Project MIT System Dynamics Group. 

[9] Chi-Chia Sun and Cheng-Chih Wang. “Ultra-low power circuit design 
based on Adiabatic Logic”. 2014 Tenth International Conference on 
Intelligent Information Hiding and Multimedia Signal Processing. 

[10] https://github.com/ariz207/tt05_GrayCounter 
[11] https://github.com/ariz207/tt06-CRC8bit 

Addendum: Python Power calculation for LTspice 
import pandas as pd 
import matplotlib.pyplot as plt 
import numpy as np 
# Load the data file 
file_path"/users/asj2021/Downloads/Capstone_LTspice/Normal_FlipFlo
ps/lowpowerdflipflop2.txt" 
df pd.read_csv(file_path, delim_whitespace=True) 
# Extract the current and time to arrays 
current = df['I(V1)'].to_numpy() 
time = df.iloc[:, 0].to_numpy() 
#Calculate integral of current 
current_integral = np.trapz(current, time) 
#Find average current and print it 
avg_current = current_integral / (10**-5) 
print(f"Average current (charge/seconds) {avg_current}") 
print(f"In nanoamps = {avg_current * (10**9)} nA") 
print("") 
######## Below here is commented out average power calculation 
##Calculate power 
df['Power'] = df['V(n001)'] * df['I(V1)'] 
power_values = df['Power'].to_numpy() 
##Compute time-weighted average power 
##Take integral of power and then divide by time (10us) 
average_power = np.trapz(power_values, time) / (10**-5) 
##Convert power to nano watts and print 
average_power_nanowatts = average_power * (10**9) 
print(f"Time-weighted Average Power in nanowatts: 
{average_power_nanowatts}")

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://github.com/ariz207/tt05_GrayCounter
https://github.com/ariz207/tt06-CRC8bit

	1. Introduction
	2. Testing
	3. Results
	4. Conclusion
	References
	Addendum: Python Power calculation for LTspice

